首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)二阶连续可导,f(0)=1,且有f’(x)+3∫0xf’(t)dt+2x∫01f(tx)dt+e-x=0,求f(x).
设函数f(x)二阶连续可导,f(0)=1,且有f’(x)+3∫0xf’(t)dt+2x∫01f(tx)dt+e-x=0,求f(x).
admin
2021-11-25
45
问题
设函数f(x)二阶连续可导,f(0)=1,且有f’(x)+3∫
0
x
f’(t)dt+2x∫
0
1
f(tx)dt+e
-x
=0,求f(x).
选项
答案
因为x∫
0
1
f(tx)dx=∫
0
x
f(u)du,所以f’(x)+3∫
0
x
f’(t)dt+2x∫
0
1
f(tx)dx+e
-x
=0可化为 f’(x)+3∫
0
x
f’(t)dt+2∫
0
x
f(t)dt+e
-x
=0 两边对x求导得f"(x)+3f’(x)+2f(x)=e
-x
由λ
2
+3λ+2=0得λ
1
=-1,λ
2
=-2 则方程f"(x)+3f’(x)+2f(x)=0的通解为C
1
e
-x
+C
2
e
-2x
令f"(x)+3f’(x)+2f(x)=e
-x
的一个特解为y
0
=axe
-x
,代入得到a=1 则原方程的通解为f(x)=C
1
e
-x
+C
2
e
-2x
+xe
-x
由f(0)=1,f’(0)=-1,得C
1
=0,C
2
=1,故原方程的解为f(x)=e
-2x
+xe
-x
解析
转载请注明原文地址:https://kaotiyun.com/show/Zdy4777K
0
考研数学二
相关试题推荐
设平面区域D(t)={(x,y)|0≤x≤y,0
设z=z(x,y)由F(az—by,bx—by,cy—ax)=0确定,其中函数F连续可偏导且afˊ1-cfˊ2≠0,则=().
设,其中f,g均可微,则
设f(x)在[a,b]上存在二阶导数,f(a)=f(b)=0,并满足f”(x)﹢[f’(x)]2-4f(x)=0.则在区间(a,b)内f(x)()
设有一容器由平面z=0,z=1及介于它们之间的曲面S所围成.过z轴上点(0,0,z)(0≤z≤1)作垂直于z轴的平面与该立体相截得水平截面D(z),它是半径r(z)=的圆面.若以每秒v0体积单位的均匀速度往该容器注水,并假设开始时容器是空的.(Ⅰ
设函数f(χ)具有一阶导数,下述结论中正确的是().
设函数f(x)在x=a的某个邻域内连续,且f(a)为其极大值,则存在δ>0,当x∈(a-δ,a+δ)时,必有().
微分方程2yy〞=(yˊ)2的通解为().
微分方程y"一7y’=(x一1)2的待定系数法确定的特解形式(系数的值不必求出)是____________。
设某产品的指标服从正态分布,它的标准差为σ=100,今抽了一个容量为26的样本,计算平均值1580,问在显著性水平α=0.05下,能否认为这批产品的指标的期望值μ不低于1600.
随机试题
脊柱血管瘤多见于
拟诊应考虑哪项治疗最合理
患者李某,男,60岁,诊断为原发性肝癌,下列哪项检查指标最有参考价值
患者,女,8岁。壮热不恶寒3天,体温常午后升高,夜间高于白天,烦躁时有谵语,舌红绛,脉细数滑。宜首选
下列关于房地产投资分析中成本的表述中,正确的是()。[2006年考题]
国际标准化组织(ISO)结合实践经验及理论分析,用高度概括又易于理解的语言,总结的质量管理的原则包括()。
不少学校开展“校园明星”评选活动,这里所使用的德育方法是()。
()表示在一定时期内,一种商品的需求量的相对变化对于该商品价格相对运动的反应程度。
(1)我们要耐心教育孩子,不要_______他们的自尊心。(2)时至今日,语言文字的_______仍然存在混乱现象。(3)我仿佛窥见鲁迅先生丰富的精神世界,感受到他所具有的道德力量,相比之下,越发显出我自己的_______。填入画横线部分最恰
馆藏(collections)丰富的高校博物馆(universitymuseum)无疑是一座“宝藏”。但令人遗憾的是,这座宝藏一直很少受到关注。最近,北京的一些高校公开表示将向公众免费开放校内博物馆。这一举动为学术馆藏走近普通大众提供了一个良好的开端。但
最新回复
(
0
)