首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)二阶连续可导,f(0)=1,且有f’(x)+3∫0xf’(t)dt+2x∫01f(tx)dt+e-x=0,求f(x).
设函数f(x)二阶连续可导,f(0)=1,且有f’(x)+3∫0xf’(t)dt+2x∫01f(tx)dt+e-x=0,求f(x).
admin
2021-11-25
65
问题
设函数f(x)二阶连续可导,f(0)=1,且有f’(x)+3∫
0
x
f’(t)dt+2x∫
0
1
f(tx)dt+e
-x
=0,求f(x).
选项
答案
因为x∫
0
1
f(tx)dx=∫
0
x
f(u)du,所以f’(x)+3∫
0
x
f’(t)dt+2x∫
0
1
f(tx)dx+e
-x
=0可化为 f’(x)+3∫
0
x
f’(t)dt+2∫
0
x
f(t)dt+e
-x
=0 两边对x求导得f"(x)+3f’(x)+2f(x)=e
-x
由λ
2
+3λ+2=0得λ
1
=-1,λ
2
=-2 则方程f"(x)+3f’(x)+2f(x)=0的通解为C
1
e
-x
+C
2
e
-2x
令f"(x)+3f’(x)+2f(x)=e
-x
的一个特解为y
0
=axe
-x
,代入得到a=1 则原方程的通解为f(x)=C
1
e
-x
+C
2
e
-2x
+xe
-x
由f(0)=1,f’(0)=-1,得C
1
=0,C
2
=1,故原方程的解为f(x)=e
-2x
+xe
-x
解析
转载请注明原文地址:https://kaotiyun.com/show/Zdy4777K
0
考研数学二
相关试题推荐
已知当x>0与y>0时,则函数f(x,y)在点(x,y)=(1,1)处的全微分df|(1,1)=__________.
设f(x)连续,且满足f(x)+=x2+1/2则关于f(x)的极值问题有()。
设f(x)在[1,+∞)上连续且可导,若曲线y=f(x),直线x=1,x=t(t>1)与x轴围成的平面区域绕x轴旋转一周所得的旋转体的体积为且f(2)=,求函数y=f(x)的表达式.
设y=y(x)满足方程作自变量替换则y作为t的函数满足的微分方程微分方程是_________。
设三阶常系数齐次线性微分方程有特解y1=ex,y2=2xex,y3=3e-x,则该微分方程为().
设矩阵是满秩的,则直线()
二阶常系数非齐次线性微分方程y"-2y’-3y=(2x+1)e-x的特解形式为()。
设f(x)满足f(x)在x=0邻域二阶可导,f’(0)=0,且f’’(x)-xf’(x)=ex-1,则下列说法正确的是
设f(x)是二阶常系数非齐次线性微分方程y"+py’+qy=sin2x+2ex的满足初始条件f(0)=f’(0)=0的特解,则当x→0时,().
某保险公司设置某一险种,规定每一保单有效期为一年,有效理赔一次,每个保单收取保费500元,理赔额为40000元.据估计每个保单索赔概率为0.01,设公司共卖出这种保单8000个,求该公司在该险种上获得的平均利润.
随机试题
A.异烟肼、吡嗪酰胺B.左旋氧氟沙星C.链霉素D.糖皮质激素E.利福平
女性,60岁,因右上腹痛伴发热3天入院,2个月前因心衰住院,治疗后好转。体检:巩膜无黄染,心率120次/分,右上腹压痛、肌紧张,Murphy征(+),可扪及肿大的胆囊最可能的诊断是
关于溃疡性结肠炎的叙述,正确的是
下列关于刑事司法协助的说法中正确的有哪些?()
关于资质认定的概念,下列描述正确的是()。
将反应MnO2+HCl→MnCl2+Cl2+H2O配平后,方程式中MnCl2的系数是:
下列报表中不可以设计成预置报表的是()。
与不公开直接发行股票方式相比,公开间接发行股票方式的特点是()。
是国家的法律监督机关。
2009年民政事业费占国家财政支出比重由2008年的3.4%下降到2.9%,比上年降低了0.5个百分点,比2001年提高了1.4个百分点。2002年至2006年间,中央转移支付年增长额最大的年份是()。
最新回复
(
0
)