首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
向量组α1,α2,…,αs(s≥2)线性相关的充要条件是( ).
向量组α1,α2,…,αs(s≥2)线性相关的充要条件是( ).
admin
2021-07-27
36
问题
向量组α
1
,α
2
,…,α
s
(s≥2)线性相关的充要条件是( ).
选项
A、存在一组数k
1
,k
2
,…,k
s
,使得k
1
α
1
+k
2
α
2
+…+k
s
α
s
=0成立
B、α
1
,α
2
,…,α
s
中至少有两个向量成比例
C、α
1
,α
2
,…,α
s
中至少有一个向量被其余s-1个向量线性表示
D、α
1
,α
2
,…,α
s
中任意一个部分向量组线性相关
答案
C
解析
判断向量组的线性相关性有多个角度,其中能作为其充要条件的主要有:
①向量组线性相关的定义,存在一组不全为零的数k
1
,k
2
,…,k
s
,使得k
1
α
1
+k
2
α
2
+…+k
s
α
s
=0成立;
②从秩的角度,r(α
1
,α
2
,…,α
s
)<s;
③从向量组内向量之间的线性组合关系角度,向量组内至少有一个向量可以被其余向量线性表示;
④从向量组α
1
,α
2
,…,α
3
对应的齐次线性方程组解的角度,即线性方程组k
1
α
1
+k
2
α
2
+…+k
s
α
s
=0必有无穷多解.对照比较,选项(A)中缺少关键词“不全为零”,选项(B),(D)仅为充分条件,均不合题意,选项(C)与③表述一致,故选(C).
转载请注明原文地址:https://kaotiyun.com/show/Zhy4777K
0
考研数学二
相关试题推荐
设矩阵A=(α1,α2,α3,α4)经行初等变换为矩阵B=(β1,β2,β3,β4),且α1,α2,α3线性无关,α1,α2,α3,α4线性相关,则().
设A是三阶矩阵,其特征值是1,3,一2,相应的特征向量依次是α1,α2,α3,若P=(α1,2α3,一α2),则P一1AP=()
齐次线性方程组Ax=0的系数矩阵A4×5=(α1,α2,α3,α4,α5)经初等行变换化为阶梯形矩阵A=(α1,α2,α3,α4,α5)→,则()
设A,B均是n阶实对称矩阵,则A,B合同的充分必要条件是()
求(x+2)y"+xy’2=y’的通解.
设f(x)可导,证明:f(x)的两个零点之间一定有f(x)+f’(x)的零点.
设A是m×n矩阵,Ax=0是非齐次线性方程组Ax=b所对应的齐次线性方程组,则下列结论正确的是()
设A是m×n阶矩阵,且非齐次线性方程组AX=b满足r(A)=r()=r<n.证明:方程组AX=b的线性无关的解向量的个数最多是n-r+1个.
已知向量组(Ⅰ)α1,α2,α3,α4线性无关,则与(Ⅰ)等价的向量组是()
设α0是A的特征向量,则α0不一定是其特征向量的矩阵是
随机试题
关于腰椎间盘突出CT表现中,不正确的是
先天性髋脱位脱位期的主要体征为
下列说法中不正确的为()。
在登记账簿时,红色墨水不能用于()。
有人举报明轩汽车制造企业有偷税行为。经过税务检查,甲市桥西区地税局认定。该企业发生偷税行为,依法核定应纳税额为15万,税务机关于2013年3月15日作出补缴税款、缴纳滞纳金并处以罚款的决定。该企业对该处理决定不服,于2013年4月1日向复议机关申请复议。2
存在着对应关系的账户,称为()。
以下说法正确的是()。
甲、乙二人合伙经营一辆长途汽车,由二人轮流驾驶经营。在乙驾驶经营期间,因疏忽大意,将一行人撞伤,则应由甲、乙二人对第三人承担连带责任。()
站在辽阔的大草原上,轻风拂面,微阖眼睑,脑海_______这样的镜头:平静的黄河之中,一匹龙马突然冲破水面,昂首抖落珍珠般的水滴,刚劲矫健的四蹄踏浪驮书,使“伏羲氏有天下”。那是多么神奇撼人、_______的画面。填入画横线部分最恰当的一项是:
对在中华人民共和国领域内违法犯罪的外国人、无国籍人、华侨,在大陆违法犯罪的台湾居民和在内地违法犯罪的香港、澳门特别行政区居民,可以决定劳动教养。()
最新回复
(
0
)