首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设向量组α1,α2,…,αm线性无关,β1可由α1,α2,…,αm线性表示,但β2不可由α1,α2,…,αm线性表示,则( ).
设向量组α1,α2,…,αm线性无关,β1可由α1,α2,…,αm线性表示,但β2不可由α1,α2,…,αm线性表示,则( ).
admin
2019-08-12
38
问题
设向量组α
1
,α
2
,…,α
m
线性无关,β
1
可由α
1
,α
2
,…,α
m
线性表示,但β
2
不可由α
1
,α
2
,…,α
m
线性表示,则( ).
选项
A、α
1
,α
2
,…,α
m-1
,β
1
线性相关
B、α
1
,α
2
,…,α
m-1
,β
1
,β
2
线性相关
C、α
1
,α
2
,…,α
m
,β
1
+β
2
线性相关
D、α
1
,α
2
,…,α
m
,β
1
+β
2
线性无关
答案
D
解析
A项不对,因为β
1
可由向量组α
1
,α
2
,…,α
m
线性表示,但不一定能被α
1
,α
2
,…,α
m1
线性表示,所以α
1
,α
2
,…,α
m-1
,β
1
不一定线性相关;
B项不对,因为α
1
,α
2
,…,α
m-1
,β
1
不一定线性相关,β
2
不一定可由α
1
,α
2
,…,α
m-1
,β
1
线性表示,所以α
1
,α
2
,…,α
m-1
,β
1
,β
2
不一定线性相关;
C项不对,因为β
2
不可由α
1
,α
2
,…,α
m
线性表示,而β
1
可由α
1
,α
2
,…,α
m
线性表示,所以β
1
+β
2
不可由α
1
,α
2
,…,α
m
线性表示,于是α
1
,α
2
,…,α
m
,β
1
+β
2
线性无关,故选D.
转载请注明原文地址:https://kaotiyun.com/show/0fN4777K
0
考研数学二
相关试题推荐
设f(x)在(-∞,+∞)上连续,下述命题:①若对任意a,∫-aaf(x)dx=0,则f(x)必是奇函数;②若对任意a,∫-aaf(x)dx=2∫0af(x)dx,则f(x)必是偶函数;③若f(x)为周期为T的奇函数,则F(x)=∫0xf(t)dt也
(99年)设函数y(x)(x≥0)二阶可导,且y’(x)>0,y(0)=1.过曲线上任意一点P(x,y)作该曲线的切线及x轴的垂线,上述两直线与x轴所围成的三角形的面积记为S1,区间[0,x]上以y=y(x)为曲边的曲边梯形面积记为S2,并设2S1一S2恒
(95年)如图2.2所示,设曲线L的方程为y=f(x),且y">0,又MT、MP分别为该曲线在点M(x0,y0)处的切线和法线.已知线段MP的长度为(其中y’0=y’(x0),y0"=y"(x0)),试推导出点P(ξ,η)的坐标表达式.
(06年)设f(x,y)与φ(x,y)均为可微函数,且φy’(x,y)≠0.已知(x0,y0)是f(x,y)在约束条件φ(x,y)=0下的一个极值点,下列选项正确的是
(90年)设f(x)是连续函数,且F(x)=f(t)dt,则F’(x)等于
(00年)设函数f(x)在[0,π]上连续,且∫0πf(x)dx=0,∫0πf(x)cosxdx=0.试证明:在(0.π)内至少存在两个不同的点ξ1,ξ2,使f(ξ1)=f(ξ2)=0.
设n维列向量组(Ⅰ):α1,…,αm(m<n)线性无关,则n维列向量组(Ⅱ):β1,…,βm线性无关的充分必要条件为
二次型f(x1,x2,x3)=2x12+x22-4x32-4x1x2-2x2x3的标准形为
设f(x)是连续函数.若|f(x)|≤k,证明:当x≥0时,有
比较下列积分值的大小:(Ⅰ)I1=,其中D由x=0,y=0,x+y=,x+y=1围成,则I1,I2,I3之间的大小顺序为(A)I1<I2<I3.(B)I3<I2<I1.(C)I1<I3<I2.(D)I3<I1<I2.(Ⅱ)J
随机试题
Ⅱ型呼吸衰竭最常见于下列哪一种疾病
大量饮清水后尿量增加主要原因是结石堵塞输尿管引起尿量减少的机制是
属于产地类的术语是()。
试行标准药品转正的时间是
如果你觉得一个各方面能力都不如你的同事当了你的上司,你会()。
以洛阳为中心,形成了西通关中,北抵华北,南达太湖流域的广大通航范围的水利工程是()。
依据《国家中长期教育改革与发展规划纲要(2010~2020)》,切实推进义务教育均衡发展,要实行()
关于太平天国运动,下列说法中正确的有()
以下哪个数据库对象可以一次执行多个操作
A、Johngaveeveryoneabigsurpriseyesterday.B、Everyoneworecasuallyattheweddingparty.C、Johndidnotreadthedressingc
最新回复
(
0
)