首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知向量组α1=(1,0,2,3)T,α2=(1,1,3,5)T,α3=(1,一1,1+2,1)T,α4=(1,2,4,a+8)β=(1,1,6+3,5)T.问:(1)a,b为何值时,β不能由α1,α2,α3,α4线性表示;(2)a,b为何值时,β可由α1
已知向量组α1=(1,0,2,3)T,α2=(1,1,3,5)T,α3=(1,一1,1+2,1)T,α4=(1,2,4,a+8)β=(1,1,6+3,5)T.问:(1)a,b为何值时,β不能由α1,α2,α3,α4线性表示;(2)a,b为何值时,β可由α1
admin
2019-08-12
56
问题
已知向量组α
1
=(1,0,2,3)
T
,α
2
=(1,1,3,5)
T
,α
3
=(1,一1,1+2,1)
T
,α
4
=(1,2,4,a+8)β=(1,1,6+3,5)
T
.问:(1)a,b为何值时,β不能由α
1
,α
2
,α
3
,α
4
线性表示;(2)a,b为何值时,β可由α
1
,α
2
,α
3
,α
4
唯一线性表示;(3)a,b为何值时,β可由α
1
,α
2
,α
3
,α
4
线性表示,且表示式不唯一,并写出表示式.
选项
答案
β是否能由α
1
,α
2
,α
3
,α
4
线性表示、即非齐次线性方程组x
1
α
1
+x
2
α
2
+x
3
α
3
+x
4
α
4
=β是否有解. 于是对方程组的增广矩阵(α
1
,α
2
,α
3
,α
4
,β)=(A,β)=B施以初等行变换,得 [*] 显然,(1)当a=一1时,b≠0时,r(A)=2,r(B)=3,方程组无解,所以β不能由α
1
,α
2
,α
3
,α
4
线性表示; (2)当a≠一1时,b为任何值时,r(A)=r(B)=4,方程组有唯一解,所以β能由α
1
,α
2
,α
3
,α
4
唯一的线性表示; (3)当a=一1时,b=0时,r(A)=r(B)=2,方程组有无穷多个解,所以β能由α
1
,α
2
,α
3
,α
4
线性表示,且表示法不唯一,此时 [*] 于是方程组的通解为 [*] k
1
,k
2
为任意常数.故p=(一2k
1
+k
2
)α
1
+(k一2k
2
+1)α
2
+k
1
α
3
+k
2
α
4
,其中k
1
,k
2
为任意的常数.
解析
本题考查向量线性表示的概念和表示方法.要求考生掌握向量线性表示与其对应的非齐次线性方程组解的关系.本题可归结为非齐次线性方程组无解、有唯一解、有无穷多解的问题.
转载请注明原文地址:https://kaotiyun.com/show/ZlN4777K
0
考研数学二
相关试题推荐
计算二重积分(x+y)3dxdy,其中D由曲线x==0及x一=0围成。
设平面曲线L上一点M处的曲率半径为ρ,曲率中心为A,AM为L在点M处的法线,法线上的两点P,Q分别位于L的两侧,其中P在AM上,Q在AM的延长线AN上,若P,Q满足|AP|.|AQ|=ρ2,称P,Q关于L对称.设,P点的坐标为求点P关于L的对称点Q的坐
设A,B均为n阶矩阵,A有n个互不相同的特征值,且AB=BA,证明:B相似于对角阵.
求二重积分(x一y)dxdy,其中D={(x,y)|(x一1)2+(y一1)2≤2,y≥x}。
已知n阶矩阵A的每行元素之和为a,求A的一个特征值,当k是自然数时,求Ak的每行元素之和.
计算定积分
利用导数证明:当x>1时,
求极限:
设线性方程组为问k1与k2各取何值时,方程组无解?有唯一解?有无穷多解?有无穷多解时,求其通解。
设线性方程组(1)证明:若a1,a2,a3,a4两两不相等,则此线性方程组无解;(2)设a1=a3=k,a2=a4=一k(k≠0),且β1=(一1,1,1)T,β2=(1,1,一1)T是该方程组的两个解,写出此方程组的通解.
随机试题
寡头垄断厂商的产品是()
Ourairplanewasjustbesidestheairportbuilding.Itdidnotlooktoostrongtome,butIdecidednottothinkaboutsuchthin
右上侧切牙缺失,间隙小,尖牙根长大,但牙冠1/3缺损,下颌对牙为局部义齿,最好的设计是
A.食管腐蚀伤急性期B.近期严重咯血C.脊髓灰质炎及流感等呼吸道传染病流行季节或流行地区D.白喉带菌者,经保守治疗无效者E.下呼吸道分泌物潴留硬质支气管镜检查的禁忌证
引起小儿秋季腹泻常见的病原体是
符合建筑装饰装修施工技术要求的有()。
用巧克力包裹的华夫饼干
金融约束论同金融抑制论的根本区别是( )。
教育与人的发展、教育与社会的发展是教育学两条基本的矛盾或关系。
Whatkindofdisorderisdyslexia?
最新回复
(
0
)