首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设向量组α1=(1,0,1)T,α2=(0,1,1)T,α3=(1,3,5)T不能由向量组β1=(1,1,1)T,β2=(1,2,3)T,β3=(3,4,a)T线性表示. 求a的值;
设向量组α1=(1,0,1)T,α2=(0,1,1)T,α3=(1,3,5)T不能由向量组β1=(1,1,1)T,β2=(1,2,3)T,β3=(3,4,a)T线性表示. 求a的值;
admin
2018-07-31
46
问题
设向量组α
1
=(1,0,1)
T
,α
2
=(0,1,1)
T
,α
3
=(1,3,5)
T
不能由向量组β
1
=(1,1,1)
T
,β
2
=(1,2,3)
T
,β
3
=(3,4,a)
T
线性表示.
求a的值;
选项
答案
解 4个3维向量β
1
,β
2
,β
3
,α
i
线性相关(i=1,2,3),若β
1
,β
2
,β
3
线性无关,则α
i
可由β
1
,β
2
,β
3
线性表示(i=1,2,3),这与题设矛盾,于是β
1
,β
2
,β
3
线性相关,从而0=|β
1
,β
2
,β
3
|=[*]=a一5, 于是a=5.此时,α
1
不能由向量组β
1
,β
2
,β
3
线性表示.
解析
转载请注明原文地址:https://kaotiyun.com/show/a5g4777K
0
考研数学一
相关试题推荐
设A为m阶正定矩阵,B为m×n阶实矩阵.证明:BTAB正定的充分必要条件是r(B)=n.
设A为m×n阶实矩阵,且r(A)=n.证明:ATA的特征值全大于零.
设A是n阶矩阵,α1,α2,…,αn是n维列向量,且αn≠0,若Aα1=α2,Aα2=α3,…,Aαn—1=αn,Aαn=0.(1)证明:α1,α2,…,αn线性无关;(2)求A的特征值与特征向量.
设二维非零向量α不是二阶方阵A的特征向量.(1)证明α,Aα线性无关;(2)若A2α+Aα一6α=0,求A的特征值,讨论A可否对角化;
设随机变量X~U[一1,1],则随机变量U=arcsinX,V=arccosX的相关系数为().
设A为n阶非奇异矩阵,α是n维列向量,b为常数,P=(1)计算PQ;(2)证明PQ可逆的充分必要条件是αTA-1α≠b.
设A为n阶矩阵,A11≠0.证明:非齐次线性方程组AX=b有无穷多个解的充分必要条件是A*b=0.
设A,B为同阶方阵。(Ⅰ)若A,B相似,证明A,B的特征多项式相等;(Ⅱ)举一个二阶方阵的例子说明(Ⅰ)的逆命题不成立;(Ⅲ)当A,B均为实对称矩阵时,证明(Ⅰ)的逆命题成立。
随机试题
________是既满足当代人的需要,又不对后代满足其需要的能力构成危害的发展。
蛲虫患儿大便检查虫卵消失后,被褥用开水浸泡后在阳光下日曝晒,需要连续多少天
王某自20×6年1月1日承包了某市区的一家招待所,承包期限两年,根据协议在承包期间不变更招待所工商登记,王某每年上交承包费20万元,年终经营成果归王某所有。20×6年1月,王某向主管税务机关上报招待所有关纳税资料,账面记录显示:20×6年营业收入2000
在其他条件不变的情况下,企业过度提高现金流量比率,可能导致的结果是()。
自由和平等是现代性的两大核心价值,同时这两者之间存在着______。萨米尔.阿明曾言不讲平等的自由即意味着野蛮。一个良好的社会不应该_______地向任何一个方向倾斜,而是要在二者之间寻找_______。填入画横线部分最恰当的一项是:
KeepanEyeonCEOsGovernmentpolicydecisionscouldspeedorslowthepaceofrehabilitationforthebanks,and(31)tu
ElephantCommunicationO’Connell-Rodwell,apostdoctoralfellowatStanfordUniversity,hastravelledtoNamibia’sfirst-ev
Weleftthemeeting,thereobviously_____nopointinstaying.
ThenewsitemisaboutIran’s______.
Before1965manyscientistspicturedthecirculationoftheocean’swatermassasconsistingoflarge,slow-movingcurrents,suc
最新回复
(
0
)