首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(χ)为[-2,2]上连续的偶函数,且f(χ)>0,F(χ)=∫-22|χ-t|f(t)dt,求F(χ)在[-2,2]上的最小值点.
设f(χ)为[-2,2]上连续的偶函数,且f(χ)>0,F(χ)=∫-22|χ-t|f(t)dt,求F(χ)在[-2,2]上的最小值点.
admin
2017-09-15
63
问题
设f(χ)为[-2,2]上连续的偶函数,且f(χ)>0,F(χ)=∫
-2
2
|χ-t|f(t)dt,求F(χ)在[-2,2]上的最小值点.
选项
答案
F(χ)=∫
-2
2
|χ-t|f(t)dt=∫
-2
χ
(χ-t)f(t)dt+∫
χ
2
(χ-t)f(t)dt =χ∫
-2
χ
f(t)dt-∫
-2
χ
tf(t)dt-∫
2
χ
tf(t)dt+χ∫
2
χ
f(t)dt, F′(χ)=∫
-2
χ
f(t)dt+∫
2
χ
f(t)dt=∫
-2
0
f(t)dt+∫
0
χ
f(t)dt+∫
2
0
f(t)dt+∫
0
χ
f(t)dt, 因为∫
-2
0
f(t)dt=∫
0
2
f(t)dt,所以F′(χ)=2∫
0
χ
f(t)dt. 因为f(χ)>0,所以F′(χ)=0得χ=0, 又因为F〞(χ)=2f(χ),F〞(0)=2f(0)>0,所以χ=0为F(χ)在(-2,2)内唯一的极 小值点,也为最小值点.
解析
转载请注明原文地址:https://kaotiyun.com/show/a7t4777K
0
考研数学二
相关试题推荐
A、 B、 C、 D、 A
设X1,X2均服从参数为λ的指数分布,且相互独立,求X1+X2的密度函数.
fˊ(x。)=0,f〞(x。)>0是函数.f(x)在点x=x。处取得极小值的一个[].
解下列不等式:(1)x2<9(2)|x-4|<7(3)0<(x-2)2<4(4)|ax-x。|<δ(a>0,δ>0,x。为常数)
计算二重积分,其中D是由直线y=x-1和抛物线y2=2x+6所围成的闭区域.
设a。,a1,…an为满足的实数,证明方程a。+a1x+a2x2+…+anxn=0在(0,1)内至少有一个实根.
求一曲线,使曲线的切线、坐标轴与切点的纵坐标所围成的梯形面积等于a2,且曲线过(a,a)点.
若f(x)不变号,且曲线y=f(x)在点(1,1)处的曲率圆为x2+y2=2,则函数f(x)在区间(1,2)内
设函数问a为何值时,f(x)在x=0处连续;a为何值时,x=0是f(x)的可去区间断点?
设f(x)在(a,b)连续,x1,x2,…,xn∈(a,b),α1,α2,…,αn为任意n个正数,求证:ξ∈(a,b),使得
随机试题
根据人机特性和人机功能合理分配的原则,适合于机器做的是()工作。
称为治疗时首选药物是
下列不属于工程项目准备阶段的工作的是()
根据《政府采购法》的规定,政府采购的主体范围不包括()。
对于开市期间停牌的申报问题,上海证券交易所和深圳证券交易所在处理上相同的地方有( )。
关于债券投资风险及其规避的论述,不正确的是()。
在定期租船合同下,船舶的经营管理由()负责。
劳动争议处理的原则是()。(2003年7月二级真题)
对文化遗产的保护,充足的资金保障是必不可少的条件。世界各国文化遗产保护先进国家和地区中,资金来源大致可以分为三个渠道:一是政府直接投资,二是政府通过发行专项彩券而进行的间接投入,三是来自社会团体或个人的投入。对上述文字理解不正确的是:
已知有数组定义chara[3][4];下列表达式中错误的是()。
最新回复
(
0
)