首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
若n阶矩阵A=[α1,α2,…,αn—1,αn]的前n一1个列向量线性相关,后n—1个列向量线性无关,β=α1+α2+…+αn.证明: (1)方程组Ax=β必有无穷多解. (2)若(k1,k2,…,kn)T是Ax=β的任一解,则kn=1.
若n阶矩阵A=[α1,α2,…,αn—1,αn]的前n一1个列向量线性相关,后n—1个列向量线性无关,β=α1+α2+…+αn.证明: (1)方程组Ax=β必有无穷多解. (2)若(k1,k2,…,kn)T是Ax=β的任一解,则kn=1.
admin
2020-03-10
60
问题
若n阶矩阵A=[α
1
,α
2
,…,α
n—1
,α
n
]的前n一1个列向量线性相关,后n—1个列向量线性无关,β=α
1
+α
2
+…+α
n
.证明:
(1)方程组Ax=β必有无穷多解.
(2)若(k
1
,k
2
,…,k
n
)
T
是Ax=β的任一解,则k
n
=1.
选项
答案
(1)因为α
2
,α
3
,…,α
n
线性无关,所以α
2
,α
3
,…,α
n—1
线性无关,而α
1
,α
2
,…,α
n—1
,线性相关,因此α
1
可由α
2
,…,α
n—1
线性表出,r(A)=n一1. 又β=α
1
,α
2
,…,α
n
可由α
1
,α
2
,…,α
n
线性表出,增广矩阵[*]=r(A)=n一1,因此方程组Ax=β必有无穷多解. (2)因为α
1
,α
2
,…,α
n—1
线性相关,故存在不全为零的实数l
1
,l
2
,…,l
n—1
,使 l
1
α
1
+l
2
α
2
+…+l
n—1
α
n
=0,即 [*] 又因r(A)=n一1,故(l
1
,…,l
n—1
,0)
T
是Ax=0的基础解系. 又[*]=α
1
,α
2
,…,α
n
=β, 故(1,1,…,1)
T
是Ax=β的一个特解,于是Ax=β通解是 (1,1,…,1)
T
+k(l
1
,l
2
,…,l
n—1
,0). 因此,当(k
1
,…,k
n—1
)
T
是Ax=β的解时,必有kk
n
=1.
解析
转载请注明原文地址:https://kaotiyun.com/show/a8D4777K
0
考研数学三
相关试题推荐
设(X,Y)服从二维正态分布,其边缘分布为X~N(1,1),Y~N(2,4),X,Y的相关系数为ρXY=-0.5,且P(aX+bY≤1)=0.5,则().
设f(x)为不恒等于零的奇函数,且f’(0)存在,则函数g(x)=f(x)/x
非齐次线性方程组Ax=b中未知量个数为n,方程个数为m,系数矩阵A的秩为r,则
设函数f(x)在x=0处连续.且,则
设X,Y为两个随机变量,P(X≤1,Y≤1)=,P(X≤1)=P(Y≤1)=,则P{min(X,Y)≤1)=().
设A,B均为n阶矩阵,A可逆且A~B,则下列命题中:①AB~BA;②A2~B2;③AT~BT;④A-1~B-1.正确的个数为()
从正态总体X~N(0,σ2)中抽取简单随机样本X1,X2,…,Xn,则可作为参数σ2的无偏估计量的是().
设,则I,J,K的大小关系为
设随机变量X服从正态分布N(μ,σ2),则随σ的增大,概率P{|X一μ|<σ}应该
设数列{an},{bn}满足ebn=ean-an,且an>0,n=1,2,3,…,证明:(Ⅰ)bn>0;(Ⅱ)若收敛,则收敛。
随机试题
已知用户登录名为htjc,用户所在的主机名为163.com,则________________是正确的电子邮件地址。
实现农村初级卫生保健的基础和关键是
案情:甲公司委派业务员张某去乙公司采购大蒜,张某持盖章空白合同书以及采购大蒜授权委托书前往。甲、乙公司于2010年3月1日签订大蒜买卖合同,约定由乙公司代办托运,货交承运人丙公司后即视为完成交付。大蒜总价款为100万元,货交丙公司后甲公司付50万元货款,货
根据资源税暂行条例规定,对资源税税目税额明细表中未列举名单的纳税人使用的税额,由各省、自治区、直辖市人民政府根据纳税人的资源状况,参照该表中确定的临近矿山的税额标准上下浮动一定的比例核定,这一规定的比例为()。
计算我国国内生产总值中的第一、二、三产业产值之比,是采用了计算()的数据整理方法。
设高度为H的二叉树上只有度为0和度为2的结点,则此类二-y.树中所包含的结点数至少为()。
HappyMarriage,HappyHeartHappilymarriedpeoplehavelowerbloodpressure【51】______unhappilymarriedpeopleorsingles,
Duringthetraditionalweddingceremony,thebrideandthebridegroompromiseeachotherlifelongdevotion.Yet,aboutoneouto
What’sthewomangoingtodo?
Theitemscontainedintheparceldon’tcorrespond______thoseonthelistthataccompaniedit.
最新回复
(
0
)