首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设线性方程组AX=β有3个不同的解γ1,γ2,γ3,r(A)=n一2,n是未知数个数,则( )正确.
设线性方程组AX=β有3个不同的解γ1,γ2,γ3,r(A)=n一2,n是未知数个数,则( )正确.
admin
2019-01-06
82
问题
设线性方程组AX=β有3个不同的解γ
1
,γ
2
,γ
3
,r(A)=n一2,n是未知数个数,则( )正确.
选项
A、对任何数c
1
,c
2
,c
3
,c
1
γ
1
+c
2
γ
2
+c
3
γ
3
都是AX=β的解;
B、2γ
1
—3γ
2
+γ
3
是导出组AX=0的解;
C、γ
1
,γ
2
,γ
3
线性相关;
D、γ
1
—γ
2
,γ
2
一γ
3
是AX=0的基础解系.
答案
B
解析
Aγ
i
=β,因此A(2γ
1
一3γ
2
+γ
3
)=2β一3β+β=0,即2γ
1
一3γ
2
+γ
3
是AX=0的解,(B)正确.
c
1
γ
1
+c
2
γ
2
+c
3
γ
3
都是AX=β的解
c
1
+c
2
+c
3
=1,(A)缺少此条件.
当r(A)=n一2时,AX=0的基础解系包含两个解,此时AX=β存在3个线性无关的解,因此不能断定γ
1
,γ
2
,γ
3
线性相关.(C)不成立.
γ
1
—γ
2
,γ
2
—γ
3
都是AX=0的解,但从条件得不出它们线性无关,因此(D)不成立.
转载请注明原文地址:https://kaotiyun.com/show/qzP4777K
0
考研数学三
相关试题推荐
A、AP1P2.B、AP1P3.C、AP3P1.D、AP2P3.B把矩阵A的第2列加至第1列,然后第1,3两列互换可得到矩阵表示矩阵A的第2列加至第1列,即AP1,故应在(A)、(B)中选择.而表示第1和3两列互换,所以选(B).
设A,B,A+B,A-1+B-1均为n阶可逆矩阵,则(A-1+B-1)-1=
设在x=0连续,则常数a与b满足的关系是___________.
设随机变量X和Y的联合密度为试求X的概率密度f(x);
已知随机变量(X,Y)在区域D={(x,y)|—1<x<1,一1<y<1}上服从均匀分布,则
(05年)设f(χ),g(χ)在[0,1]上的导数连续,且f(0)=0,f′(χ)≥0,g′(χ)≥0.证明:对任何a∈[0,1],有∫0ag(χ)f′(χ)dχ+∫01f(χ)g′(χ)dχ≥f(a)g(1).
(99年)设向量β可由向量组α1,α2,…,αm线性表示,但不能由向量组(Ⅰ):α1,α2,…,αm-1线性表示,记向量组(Ⅱ):α1,α2,…,αm-1,β,则【】
(92年)设二维随机变量(X,Y)的概率密度为(1)求X的概率密度fx(χ);(2)求P{X+Y≤1}.
设二次型f(χ1,χ2,χ3)=χ12+χ22+aχ32+2bχ1χ2-2χ1χ3+2χ2χ3(b<0)通过正交变换化成了标准形f=6y12+3y22-2y12.求a、b的值及所用正交变换的矩阵P.
设随机变量U和V的可能取值均为1和一1,且P(U=1)=.(1)求U和V的联合分布律;(2)求协方差Cov(U+1,V一1);(3)求关于x的方程x2+Ux+V=0至少有一个实根的概率.
随机试题
“议行合一”制产生于()
关于定群研究的描述有误者为
关于汽车库、修车库总平面布局的一般规定,叙述正确的有()。
组织设计类型中职能制的缺点是()。
()是国家管理经济社会活动最具有抽象性和稳定性的手段。
警察的社会管理职能具有以下特点()。
求极限
[*]
培训部会计师魏女士正在准备有关高新技术企业科技政策的培训课件,相关资料存放在Word文档“PPT素材.docx”中。按下列要求帮助魏女士完成PPT课件的整合制作:(1)创建一个名为“PPT.pptx”的新演示文稿,该演示文稿需要包含Word文档“
Youshouldspendabout20minutesonQuestions1-13whicharebasedonReadingPassage1below.TheSweetScentofSuccessMany
最新回复
(
0
)