首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是n×m矩阵,B是m×n矩阵,且m>n,若AB=E,其中E是n阶单位矩阵,则必有
设A是n×m矩阵,B是m×n矩阵,且m>n,若AB=E,其中E是n阶单位矩阵,则必有
admin
2017-07-11
44
问题
设A是n×m矩阵,B是m×n矩阵,且m>n,若AB=E,其中E是n阶单位矩阵,则必有
选项
A、矩阵A的列向量组线性相关,矩阵B的行向量组线性相关.
B、矩阵A的列向量组线性相关,矩阵B的列向量组线性相关.
C、矩阵A的行向量组线性相关,矩阵B的行向量组线性相关.
D、矩阵A的行向量组线性相关,矩阵B的列向量组线性相关.
答案
A
解析
显然r(AB)=n.由矩阵“越乘秩越小"性质及矩阵秩的定义可知
n=r(AB)≤r(A)≤min{m,n},
n=r(AB)≤r(B)≤min{m,n},
又m>n,故min{m,n)=n,从而可得
r(A
n×m
)=n<m, r(B
m×n
)=n<m,
即矩阵A的列向量组线性相关,矩阵B的行向量组线性相关.
转载请注明原文地址:https://kaotiyun.com/show/a8H4777K
0
考研数学三
相关试题推荐
设随机变量(X,Y)的联合概率密度为讨论随机变量X与Y的相关性和独立性.
设X1,X2,…,Xn是来自总体X的简单随机样本,X的概率密度为是未知参数.求A的最大似然估计量,并求.
设X1,X2,…,Xn是来自总体X的简单随机样本,X的概率密度为是未知参数.求A的矩估计量;
已知A是3阶矩阵,α1,α2,α3是线性无关的3维列向量,满足Aα1=一α1一3α2—3α3,Aα2=4α1+4α2+α3,Aα3一2α1+3α3.求矩阵A*一6E的秩.
已知α1=(1,3,5,一1)T,α2=(2,7,α,4)T,α3=(5,17,一1,7)T,当α=3时,求与α1,α2,α3都正交的非零向量α4;
设有来自三个地区的各10名、15名和25名考生的报名表,其中女生的报名表分别为3份、7份和5份,随机地取一个地区的报名表,从中先后抽出两份.(Ⅰ)求先抽到的一份是女生的概率p;(Ⅱ)已知后抽到的一份是男生表,求先抽到的一份是女生表的概率q.
设A为n阶非奇异矩阵,a是n维列向量,b为常数,P=(Ⅰ)计算PQ;(Ⅱ)证明PQ可逆的充分必要条件是aTA-1a≠b.
曲线的切线与x轴和y轴围成一个图形,记切点的横坐标为a。试求切线方程和这个图形的面积.当切点沿曲线趋于无穷远时,该面积的变化趋势如何?
设(X,Y)是二维随机变量,X=的边缘概率密度为,在给定X=x(0
设X1,X2,X3,…Xn是来自正态总体N(μ,σ2)的简单随机变量,X是样本均值,记S12=服从自由度为n一1的t分布的随机变量为().
随机试题
下列各项中,能作为短期偿债能力辅助指标的是
原发性胆汁淤积性肝硬化最常见的早期症状为
2012年,某市受理专利申请量82682件,比上年增长3.1%。其中,发明专利37139件,增长15.5%。专利授权量51508件,增长7.4%。其中,发明专利11379件,增长24.2%。2012年全市有高新技术企业4312家,技术先进型服务企业281家
根据《企业会计准则第15号——建造合同》,下列费用中,不应计入工程成本的是()。
()接受承运人的委托,代理与船舶有关的一切业务的人。
可持续增长率可以表达为()。
养花专业户张某为防止花被偷,在花房周围私拉电网。一日晚,李某偷花不慎触电,经送医院抢救,不治身亡。张某对这种结果的主观心理态度是()。
细胞凋亡和程序性坏死的主要区别包括()。
犯罪的主观方面包括()。
Giventhechoice,youngerprofessionalsaremostinterestedinworkingattechcompanieslikeAppleandgovernmentagencieslike
最新回复
(
0
)