首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知(1,一1,1,一1)T是线性方程组 的一个解,试求 (1)该方程组的全部解,并用对应的齐次线性方程组的基础解系表示全部解; (2)该方程组满足x2=x3的全部分.
已知(1,一1,1,一1)T是线性方程组 的一个解,试求 (1)该方程组的全部解,并用对应的齐次线性方程组的基础解系表示全部解; (2)该方程组满足x2=x3的全部分.
admin
2019-05-11
71
问题
已知(1,一1,1,一1)
T
是线性方程组
的一个解,试求
(1)该方程组的全部解,并用对应的齐次线性方程组的基础解系表示全部解;
(2)该方程组满足x
2
=x
3
的全部分.
选项
答案
将解向量x=(1,一 1,1,一1)
T
代入方程组,得λ=μ.对方程组的增广矩阵施行初等行变换: [*] 因r(A)=[*]=2<4,故方程组有无穷多解,全部解为 x=([*],1,0,0)
T
+k
1
(1,一3,1,0)
T
+k
2
(一1,一2,0,2)
T
,其中k
1
,k
2
为任意常数. (2)当λ≠[*]时,由于x
2
=x
3
,即[*]故此时,方程组的解为x=[*] (一2,1,一1,2)
T
=(一1,0,0,1)
T
. 当λ=[*]时,由于x
2
=x
3
,即1一 3k
1
一 2k
2
=k
1
,解得k
2
=[*]一2k
1
故此时全部解为x=([*],1,0,0)
T
+k
1
(1, 一 3,1,0)
T
+([*]一 2k
1
)(一1, 一 2,0,2)
T
=(一 1,0,0,1)
T
+k
1
(3,1,1, 一 4)
T
.
解析
转载请注明原文地址:https://kaotiyun.com/show/aAV4777K
0
考研数学二
相关试题推荐
n维列向量组α1,…,αn-1线性无关,且与非零向量β正交.证明:α1,…αn-1,β线性无关.
设f(χ)在[0,1]上二阶可导,且f〞(χ)<0.证明:∫01f(χ2)dχ≤f().
三元二次型f=XTAX经过正交变换化为标准形f=y12+y22-2y32,且A*+2E的非零特征值对应的特征向量为α1=,求此二次型.
设A为三阶矩阵,A的特征值为λ1=1,λ2=2,λ3=3,其对应的线性无关的特征向量分别为,向量β=,求Anβ.
设A=,求A的特征值,并证明A不可以对角化.
设A为三阶矩阵,A的各行元素之和为4,则A有特征值_______,对应的特征向量为_______.
设f(χ)二阶连续可导且f(0)=f′(0)=0,f〞(χ)>0.曲线y=f(χ)上任一点(χ,f(χ))(χ≠0)处作切线,此切线在χ轴上的截距为u,求.
计算二重积分(χ+y)dχdy,其中D:χ2+y2≤χ+y+1.
已知微分方程=(y-x)z,作变换u=x2+y2,v=,w=lnz-(x+y),其中w=w(u,v),求经过变换后原方程化成的关于w,u,v的微分方程的形式.
随机试题
股骨头缺血坏死的“双线”征是指
铣削圆柱上角度面的难点是角度面的位置控制与检测。
A.三头肌皮皱厚度B.上臂中部周长C.肌酐/身高指数D.血清转铁蛋白量E.氮平衡试验反映内脏蛋白情况的检查方法是
双小腿烧伤双前臂烧伤
①早期人们在地球上通过光学望远镜观察火星,看到火星上阴影的变化,误以为火星上有河流和植物,甚至还有“火星人”的存在②长久以来,很多人也一直在幻想这个类地行星可以成为地球人移民外星的第一个目的地③人类最初产生对火星的兴趣几乎全都是出于误解
因技术革新、设计优化等导致建筑物变得落伍陈旧而引起的减价,属于()。
以下财务评价指标中不属于静态评价指标的是( )。
药品必须经由国务院批准的允许药品进口的口岸进口。目前,允许进口药品的口岸城市有:
某集团有甲、乙、丙、丁4个仓库,且4个仓库在同一条直线上,之间分别相距2公里,1公里,3公里,且里面各有货物6吨,0吨,2吨,5吨,现在要把所有的货物都放在一个仓库里去,每吨货物每公里运费是100元,请问应把货物都放在哪个仓库最省钱?()
下列关于路由器技术指标的描述中,错误的是()
最新回复
(
0
)