首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设矩阵A=为A*对应的特征向量. (1)求a,b及α对应的A*的特征值; (2)判断A可否对角化.
设矩阵A=为A*对应的特征向量. (1)求a,b及α对应的A*的特征值; (2)判断A可否对角化.
admin
2018-01-23
61
问题
设矩阵A=
为A
*
对应的特征向量.
(1)求a,b及α对应的A
*
的特征值;
(2)判断A可否对角化.
选项
答案
(1)显然α也是矩阵A的特征向量,令Aα=λ
1
α,则有 [*] |A|=12,设A的另外两个特征值为λ
2
,λ
3
,由[*]得λ
2
=λ
3
=2. α对应的A
*
的特征值为[*]=4. (2)2E-A=[*],因为r(2E-A)=2,所以λ
2
=λ
3
=2只有一个线性无关的 特征向量,故A不可以对角化.
解析
转载请注明原文地址:https://kaotiyun.com/show/aNX4777K
0
考研数学三
相关试题推荐
设α1,α2,α3,α4为四维列向量组,且α1,α2,α3线性无关,α4=α1+α2+2α3.已知方程组[α1一α2,α2+α3,一α1+aα2+α3]X=α4有无穷多解.(1)求a的值;(2)用基础解系表示该方程组的通解.
设,B是三阶非零矩阵,且BAT=0则秩r(B)=_________.
级数x2n-1的收敛域为__________.
设A=,对A以列和行分块,分别记为A=[α1,α2,α3,α4]=[β1,β2,β3]T,其中≠0①,=0②,有下述结论:(1)r(A)=2;(2)α2,α4线性无关.(3)β1,β2,β3线性相关;(4)α1,α2,α3线性相关.上
用配方法化二次型f(x,y,z)=x2+2y2+5z2+2xy+6yz+2zx为标准形,并求所用的可逆线性变换.
设A为三阶矩阵,α1,α2,α3为三维线性无关列向量组,且有Aα1=α2+α3,Aα2=α3+α1,Aα3=α1+α2.(1)求A的全部特征值;(2)A是否可对角化?
已知f(x)和g(x)在[a,b]上连续,在(a,b)内具有二阶导数,且在(a,b)内存在相等的最大值,又设f(a)=g(a),f(b)=g(b),试证明:存在ξ∈(a,b)使得f’’(ξ)=g’’(ξ)。
设矩阵有一个特征值是3.求正交矩阵P,使(AP)TAP为对角矩阵;
设向量α=[a1,a2,…,an]T,β=[b1,b2,…,bn]T都是非零向量,且满足条件αβT=0,记n阶矩阵A=αβT,求:(1)A2;(2)A的特征值和特征向量;(3)A能否相似于对角阵,说明理由.
已知n阶矩阵求|A|中元素的代数余子式之和,第i行元素的代数余子式之和,i=1,2,…,n及主对角元的代数余子式之和
随机试题
寻常型天疱疮的皮损很少发生在
在烧伤抗休克中一般要求儿童心率小于()
桥梁按基本体系一般分为( )。
已知某进口设备原价为1500万元,安装费率为14%,设备吨重为300t,每吨设备安装费指标为8000元,则该进口设备安装费为()万元。
下列有关记账本位币选择的表述中,正确的有()。
沵迆平原,南驰苍梧涨海,北走紫塞雁门。拖以漕渠,轴以昆岗。重江复关之陕,四会五达之庄。当昔全盛之时,车挂彗,人驾肩,廛闹扑地,歌吹沸天。孳货盐田,铲利铜山。才力雄富,士马精妍。故能侈秦法,佚周令,划崇墉,刳浚洫,图修世以休命。是以板筑雉堞之殷,井斡烽橹之勤
2015年,在批准外资项目数中,外资企业占外资直接投资项目比例约为:
作观察记录时,不可使用哪些语言来表述()。
《中华人民共和国物权法》第179条规定:“为担保债务的履行,债务人或者第三人不转移财产的占有,将该财产抵押给债权人的,债务人不履行到期债务或者发生当事人约定的实现抵押权的情形,债权人有权就该财产优先受偿。前款规定的债务人或者第三人为抵押人,债权人为抵押权
1953年12月,中共中央指出:“从中华人民共和国成立,到社会主义改造基本完成,这是一个过渡时期。党在这个过渡时期的总路线和总任务,是要在一个相当长的时期内,逐步实现国家的社会主义工业化,并逐步实现国家对农业、对手工业和对资本主义工商业的社会主义改造。”这
最新回复
(
0
)