首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[a,b]上连续,且f’’(x)>0,对任意的x1,x2∈[a,b]及0<λ<1,证明:f[λx1+(1-λ)x2]≤λf(x1)+(1-λ)f(x2).
设f(x)在[a,b]上连续,且f’’(x)>0,对任意的x1,x2∈[a,b]及0<λ<1,证明:f[λx1+(1-λ)x2]≤λf(x1)+(1-λ)f(x2).
admin
2019-08-12
57
问题
设f(x)在[a,b]上连续,且f’’(x)>0,对任意的x
1
,x
2
∈[a,b]及0<λ<1,证明:f[λx
1
+(1-λ)x
2
]≤λf(x
1
)+(1-λ)f(x
2
).
选项
答案
令x
0
=λx
1
+(1-λ)x
2
,则x
0
∈[a,6],由泰勒公式得 f(x)=f(x
0
)+f’(x
0
)(x-x
0
)+[*](x-x
0
)
2
,其中ξ介于x
0
与x之间, 因为f’’(x)>0,所以f(x)≥f(x
0
)+f’(x
0
)(x-x
0
), 于是 [*] 两式相加,得f[λx
1
+(1-λ)x
2
]≤λf(x
1
)+(1-λ)f(x
2
).
解析
转载请注明原文地址:https://kaotiyun.com/show/alN4777K
0
考研数学二
相关试题推荐
求
设3阶矩阵A满足|A—E|=|A+E|=|A+2E|=0,试计算|A*+3E|.
已知n阶方阵A满足矩阵方程A2一3A一2E=O.证明:A可逆,并求出其逆矩阵A-1.
设平面曲线L上一点M处的曲率半径为ρ,曲率中心为A,AM为L在点M处的法线,法线上的两点P,Q分别位于L的两侧,其中P在AM上,Q在AM的延长线AN上,若P,Q满足|AP|.|AQ|=ρ2,称P,Q关于L对称.设,P点的坐标为求点M,使得L在M点处的法
设A为3阶矩阵,3维列向量α,Aα,A2α线性无关,且满足3Aα-2A2α-A3α=0,令矩阵P=[αAαA2α],(1)求矩阵B,使AP=PB;(2)证明A相似于对角矩阵.
设向量组α1,α2,α3线性无关,则下列向量组中,线性无关的是()
计算定积分
求函数的导数:y=aax+axx+axa+aaa(a>0).
设有一正椭圆柱体,其底面的长、短轴分别为2a,2b,用过此柱体底面的短轴且与底面成α角的平面截此柱体,得一楔形体(如图1.3—2),求此楔形体的体积V.
某试验性生产线每年1月份进行熟练工与非熟练工的人数统计,然后将熟练工支援其他生产部门,其缺额由招收新的非熟练工补齐。新、老非熟练工经过培训及实践至年终考核有成为熟练工。设第n年1月份统计的熟练工与非熟练工所占百分比分别为xn和yn,记成向量。与的关系式并写
随机试题
剪切文件的快捷键组合是【】
β-肾上腺素能受体分布最多的是
A.X线平片B.DSAC.MRID.CTE.骨放射性核素显像以下病变首选的影像学检查方法是骨肉瘤
动脉导管解剖上关闭年龄约80%的婴儿是()
在设计阶段进行限额设计的最高限额是()
下列关于无效劳动合同,叙述正确的有()。
339,516,236,729,428,()
国家行政权力的载体是()。
Accordingtocertainbeercommercials,thecontemporaryversionofsuccess【C1】______inmovinguptoapremiumbrandthatcostsa
新奥尔良方法将数据库设计分为四个阶段,它们是
最新回复
(
0
)