首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设向量组α1=(1,1,1,3)T,α2=(-1,-3,5,1)T,α3=(3,2,-1,p+2)T,α4=(-2,-6,10,p)T, p为何值时,该向量组线性相关?并在此时求出它的秩和极大线性无关组.
设向量组α1=(1,1,1,3)T,α2=(-1,-3,5,1)T,α3=(3,2,-1,p+2)T,α4=(-2,-6,10,p)T, p为何值时,该向量组线性相关?并在此时求出它的秩和极大线性无关组.
admin
2021-02-25
46
问题
设向量组α
1
=(1,1,1,3)
T
,α
2
=(-1,-3,5,1)
T
,α
3
=(3,2,-1,p+2)
T
,α
4
=(-2,-6,10,p)
T
,
p为何值时,该向量组线性相关?并在此时求出它的秩和极大线性无关组.
选项
答案
p=2时,向量组α
1
,α
2
,α
3
,α
4
线性相关,其秩为3,并且α
1
,α
2
,α
3
(或α
1
,α
3
,α
4
)为其一个极大线性无关组.
解析
转载请注明原文地址:https://kaotiyun.com/show/mi84777K
0
考研数学二
相关试题推荐
已知线性方程组(1)a、b为何值时,方程组有解?(2)当方程组有解时,求出方程组的导出组的一个基础解系.(3)当方程组有解时,求出方程组的全部解.
设A是n阶矩阵,证明方程组Ax=b对任何b都有解的充分必要条件是|A|≠0.
已知r(a1,a2,a3)=2,r(a2,a3,a4)=3,证明:a4不能由a1,a2,a3线性表示。
设A,B和C都是n阶矩阵,其中A,B可逆,求下列2n阶矩阵的伴随矩阵.
设A是3×4阶矩阵且r(A)=1,设(1,-2,1,2)T,(1,0,5,2)T,(-1,2,0,1)T,(2,-4,3,a+1)T皆为AX=0的解.(1)求常数a;(2)求方程组AX=0的通解.
设四阶矩阵B满足,求矩阵B.
已知A是n阶对称矩阵,B是n阶反对称矩阵,证明A—B2是对称矩阵。
设A为三阶实对称矩阵,A的每行元素之和为5,AX=0有非零解且λ1=2是A的特征值,对应特征向量为(-1,0,1)T.(1)求A的其他特征值与特征向量;(2)求A.
设向量组α1,α2,…,αs为齐次线性方程组AX=0的一个基础解系,Aβ≠0.证明:齐次线性方程组BY=0只有零解,其中B=(β,β+α1,…,β+αs).
已知向量组(Ⅰ)能由向量组(Ⅱ)线性表出,且秩(Ⅰ)=秩(Ⅱ),证明向量组(Ⅰ)与向量组(Ⅱ)等价.
随机试题
下列选项中,具有祛风除湿、通经活络功效的药物是()(2005年第38题)
A.防腐剂B.矫味剂C.乳化剂D.抗氧剂E.助悬剂制备维生素C注射液时,加入的亚硫酸氢钠是作为()。
患者,女,28岁。妊娠6周,为纠正胎位不正采取胸膝卧位,下列做法错误的是
商业银行不得从事( )业务,但国家另有规定的除外。
在激发个体努力工作的动机因素中,不属于外源性动机的是()。
在中国教育制度发展史上,中学阶段最早兼顾升学和就业双重需要的学制是()
你如何看待将“见危不救”入罪?
下列叙述中正确的是
下列4种软件中属于应用软件的是()。
Sheboughtahousenearthesealastyearsoshecouldtakea______alongthebeachwhenevershewantedto.
最新回复
(
0
)