首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设向量组α1=(1,1,1,3)T,α2=(-1,-3,5,1)T,α3=(3,2,-1,p+2)T,α4=(-2,-6,10,p)T, p为何值时,该向量组线性相关?并在此时求出它的秩和极大线性无关组.
设向量组α1=(1,1,1,3)T,α2=(-1,-3,5,1)T,α3=(3,2,-1,p+2)T,α4=(-2,-6,10,p)T, p为何值时,该向量组线性相关?并在此时求出它的秩和极大线性无关组.
admin
2021-02-25
26
问题
设向量组α
1
=(1,1,1,3)
T
,α
2
=(-1,-3,5,1)
T
,α
3
=(3,2,-1,p+2)
T
,α
4
=(-2,-6,10,p)
T
,
p为何值时,该向量组线性相关?并在此时求出它的秩和极大线性无关组.
选项
答案
p=2时,向量组α
1
,α
2
,α
3
,α
4
线性相关,其秩为3,并且α
1
,α
2
,α
3
(或α
1
,α
3
,α
4
)为其一个极大线性无关组.
解析
转载请注明原文地址:https://kaotiyun.com/show/mi84777K
0
考研数学二
相关试题推荐
设A,b都是n阶矩阵,使得A+B可逆,证明B(A+B)-1A=A(A+B)-1B.
A是三阶矩阵,λ1,λ2,λ3是三个不同的特征值,ξ1,ξ2,ξ3是相应的特征向量.证明:向量组A(ξ1+ξ2),A(ξ2+ξ3),A(ξ3+ξ1)线性无关的充要条件是A是可逆矩阵.
已知f(x)是周期为5的连续函数,它在x=0的某个邻域内满足关系式f(1+sinx)一3f(1-sinx)=8x+α(x),其中α(x)是当x→0时比x高阶的无穷小量,且f(x)在x=1处可导,求曲线y=f(x)在点(6,f(6))处的切线方程
证明n维向量α1,α2……αn线性无关的充要条件是
设f(x)在[0,2]上三阶连续可导,且f(0)=1,f’(1)=0,f(2)=.证明:存在ξ∈(0,2),使得f’’’(ξ)=2.
设向量α1,α2,…,αn-1是n—1个线性无关的n维列向量,ξ1,ξ2是与α1,α2,…,αn-1均正交的n维非零列向量。证明:α1,α2,…,αn-1ξ线性无关。
设向量α1,α2,…,αn-1是n—1个线性无关的n维列向量,ξ1,ξ2是与α1,α2,…,αn-1均正交的n维非零列向量。证明:ξ1,ξ2线性相关;
a,b取何值时,方程组有解?
设向量组α1,α2,…,αs为齐次线性方程组AX=0的一个基础解系,Aβ≠0.证明:齐次线性方程组BY=0只有零解,其中B=(β,β+α1,…,β+αs).
随机试题
一般授权立法
社会主义思想道德建设的基本任务是加强理想建设。
女,65岁,高血压、冠心病10余年,半小时前因生气心搏骤停,心电图示室颤。此时最有效的决定性治疗是
患者,女,29岁。既往月经规律,经量少,色淡,此次初产后产褥期内遍身关节酸楚、疼痛,肢体麻木,伴面色萎黄,头晕心悸,恶露量少,色淡,舌淡苔薄白,脉细弱。其治疗方药首选
根据我国《预算法》的规定,不属于全国人民代表大会预算职权的是()。
用人单位应对从事有职业危害作业的劳动者进行定期的()。
下列各项中,属于资源税征税范围的有()。
按照与旅游者约定的时间,导游人员必须提前()分钟到达旅游者下榻的饭店。
村里一对夫妻吵架,男方追着女方打,一路追打到村委会办公室,女方声称要与男方离婚。作为村干部。你如何进行调解?
SirHowardDavies,themanwiththejobofdecidingwhetherBritainneedsanewairport,mustbelookingwithsomealarmatthe
最新回复
(
0
)