首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设矩阵A=(α1,α2,α3),其中α1,α2,α3是4维列向量,已知非齐次线性方程组Ax=b的通解为 x=k(1,-2,3)T+(1,2,-1)T,k为任意常数. 试求α1,α2,α3的一个极大线性无关组,并把向量b用此极大线性无关组线性表示;
设矩阵A=(α1,α2,α3),其中α1,α2,α3是4维列向量,已知非齐次线性方程组Ax=b的通解为 x=k(1,-2,3)T+(1,2,-1)T,k为任意常数. 试求α1,α2,α3的一个极大线性无关组,并把向量b用此极大线性无关组线性表示;
admin
2021-02-25
77
问题
设矩阵A=(α
1
,α
2
,α
3
),其中α
1
,α
2
,α
3
是4维列向量,已知非齐次线性方程组Ax=b的通解为
x=k(1,-2,3)
T
+(1,2,-1)
T
,k为任意常数.
试求α
1
,α
2
,α
3
的一个极大线性无关组,并把向量b用此极大线性无关组线性表示;
选项
答案
由题设条件可知ξ=(1,-2,3)
T
是对应的齐次线性方程组Ax=0的一个基础解系,所以r(A)=3-1=2;η=(1,2,-1)
T
为非齐次线性方程组Ax=b的一个特解.于是有 [*] 由(1)可得α
1
=2α
2
-3α
3
,即α
1
可用α
2
,α
3
线性表示,则
2
,α
3
线性无关,否则r(α
1
,α
2
,α
3
)=1与r(A)=2矛盾, 所以α
1
,α
2
,α
3
的一个极大线性无关组可取为α
2
,α
3
. 由(2)可得 b=α
1
+2α
2
-α
3
=4α
2
-4
3
.
解析
本题是抽象型非齐次线性方程组的典型情形.只要从题设条件求得对应齐次线性方程组Ax=0的一个基础解系与非齐次线性方程组Ax=b的一个特解即可.其中一个关键问题仍是确定系数矩阵A的秩,由此可知基础解系中包含线性无关解向量个数.
转载请注明原文地址:https://kaotiyun.com/show/Ma84777K
0
考研数学二
相关试题推荐
构造正交矩阵Q,使得QTAQ是对角矩阵
设b>a>e,证明:ab>ba.
设A为三阶实对称矩阵,A的每行元素之和为5,AX=0有非零解且λ1=2是A的特征值,对应特征向量为(-1,0,1)T.(1)求A的其他特征值与特征向量;(2)求A.
设f(x,y)在点0(0,0)的某邻域U内连续,且常数试讨论f(0,0)是否为f(x,y)的极值?若为极值,是极大值还是极小值?
设函数f(t)在[0,+∞)上连续,且满足方程f(t)=.试求f(t).
A是2阶矩阵,2维列向量α1,α2线性无关,Aα1=α1+α2,Aα2=4α1+α2.求A的特征值和|A|.
设二阶常系数线性微分方程y"+ay’+by=cex有特解y=e2x+(1+x)ex,确定常数a,b,c,并求该方程的通解.
,求A的全部特征值,并证明A可以对角化.
设A,B为三阶矩阵且A不可逆,又AB+2B=O且r(B)=2,则|A+4E|=().
设函数f(u)可导,y=f(x2)当自变量x在x=-1处取得增量△x=-0.1时,相应的函数增量△y的线性主部为0.1,则f’(1)=()
随机试题
异种耐热钢(0.5Mo+1Cr一0.5Mo)CO2气体保护焊选用的焊丝是()。
以深邃的史识,警策的语言,撕下了“盛世”面纱的篇目是()
下列DNA中,一般不用作克隆载体的是
腺垂体功能减退症常见()
朱某,女,高热5天,不恶寒,满面红赤,皮肤红斑鲜红,咽干,口渴,喜冷饮,尿赤而少,关节疼痛,舌红绛,苔黄,脉滑数。查抗双链DNA(dsDNA)抗体、抗Sm抗体(+)。证属()
A、色谱法B、酸碱滴定法C、紫外分光光度法D、比色法E、旋光法;药物中杂质的检查采用的方法对氨基水杨酸钠中间氨基酚的检查()
患者神疲乏力,少气懒言,声音低微,头晕,不思饮食,活动后诸症加重。舌质淡伴有齿痕,苔薄白,脉虚无力。该患者长期低热不止,温度不高,属于()。
分户图上房屋的边长应实际丈量,注记取至()。
常见的钢制储罐的安装方法中,高空作业最多的是()方法。
某人以10%的单利借出1200元,借期为2年,然后以8%的复利将上述借出金额的本利和再借出,借期为3年。已知:(F/P,8%,3)=1.260,则此人在第5年末可以获得复本利和为()元。
最新回复
(
0
)