首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设矩阵A=(α1,α2,α3),其中α1,α2,α3是4维列向量,已知非齐次线性方程组Ax=b的通解为 x=k(1,-2,3)T+(1,2,-1)T,k为任意常数. 试求α1,α2,α3的一个极大线性无关组,并把向量b用此极大线性无关组线性表示;
设矩阵A=(α1,α2,α3),其中α1,α2,α3是4维列向量,已知非齐次线性方程组Ax=b的通解为 x=k(1,-2,3)T+(1,2,-1)T,k为任意常数. 试求α1,α2,α3的一个极大线性无关组,并把向量b用此极大线性无关组线性表示;
admin
2021-02-25
83
问题
设矩阵A=(α
1
,α
2
,α
3
),其中α
1
,α
2
,α
3
是4维列向量,已知非齐次线性方程组Ax=b的通解为
x=k(1,-2,3)
T
+(1,2,-1)
T
,k为任意常数.
试求α
1
,α
2
,α
3
的一个极大线性无关组,并把向量b用此极大线性无关组线性表示;
选项
答案
由题设条件可知ξ=(1,-2,3)
T
是对应的齐次线性方程组Ax=0的一个基础解系,所以r(A)=3-1=2;η=(1,2,-1)
T
为非齐次线性方程组Ax=b的一个特解.于是有 [*] 由(1)可得α
1
=2α
2
-3α
3
,即α
1
可用α
2
,α
3
线性表示,则
2
,α
3
线性无关,否则r(α
1
,α
2
,α
3
)=1与r(A)=2矛盾, 所以α
1
,α
2
,α
3
的一个极大线性无关组可取为α
2
,α
3
. 由(2)可得 b=α
1
+2α
2
-α
3
=4α
2
-4
3
.
解析
本题是抽象型非齐次线性方程组的典型情形.只要从题设条件求得对应齐次线性方程组Ax=0的一个基础解系与非齐次线性方程组Ax=b的一个特解即可.其中一个关键问题仍是确定系数矩阵A的秩,由此可知基础解系中包含线性无关解向量个数.
转载请注明原文地址:https://kaotiyun.com/show/Ma84777K
0
考研数学二
相关试题推荐
设向量α1,α2,…,αn-1是n—1个线性无关的n维列向量,ξ1,ξ2是与α1,α2,…,αn-1均正交的n维非零列向量。证明:α1,α2,…,αn-1ξ线性无关。
设矩阵A、B的行数都是m.证明:矩阵方程AX=B有解的充分必要条件是r(A)=r(AB).
A,B为n阶矩阵且r(A)+r(B)<n.证明:方程组AX=0与BX=0有公共的非零解.
设矩阵,B=P—1A*P,求B+2E的特征值与特征向量,其中A*为A的伴随矩阵,E为三阶单位矩阵。
设有向量组(I):α1=(1,0,2)T,α2=(1,1,3)T,α1=(1,-1,a+2)T和向量组(II):β1=(1,2,a+3)T,β2=(2,1,a+6)T,β3=(2,1,a+4)T.试问:当a为何值时,向量组(I)与(II)等价?当以为何值
设矩阵A=的特征值之和为1,特征值之积为-12(b>0).(1)求a、b的值;(2)求一个可逆矩阵P,使P-1AP=A为对角矩阵.
设A为n阶可逆矩阵,A*为A的伴随矩阵,证明:(A*)T=(AT)*。
若矩阵相似于对角矩阵A,试确定常数a的值;并求可逆矩阵P,使P-1AP=A.
微分方程y〞+y=-2x的通解为_________.
已知A是三阶矩阵,a1,a2,a3是线性无关的三维列向量,满足(Ⅰ)求矩阵A的特征值;(Ⅱ)求矩阵A的特征向量;(Ⅲ)求矩阵A*一6E的秩.
随机试题
对出版物的仓库管理方法有()。
EBCDIC码是一种()位的BCD码。
事故调查处理的原则包括()。
预警系统通过预警分析完成()功能。
教师申诉制度确立的法律依据是()。
教学理论包括学习理论。
以前人们经常交谈,现在电视机夺取了人们的注意力。在看电视的时候,家庭成员之间的交流几乎停止。在没有交流的情况下,家庭成员之间的关系变得越来越脆弱,甚至破裂。所以,唯一的解决办法就是把电视机扔掉。以下哪项论证中所存在的推理错误和上述陈述中的最相似?
杨某多次盗取某公司网络游戏充值账户内的虚拟货币,并用虚拟货币向他人的游戏账户内充值,获利数万元人民币。在法院合议庭讨论此案的过程中,法官甲认为,依据我国《刑法》第264条的规定,杨某的行为符合盗窃罪的构成要件,构成盗窃罪;法官乙认为,虚拟货币不属于法律意义
(1)设D=((x,y)|a≤x≤b,c≤y≤d},若f"xy与f"yx在D上连续,证明:(2)设D为xOy平面上的区域,若f"xy与f"yx都在D上连续,证明:f"xy与f"yx在D上相等.
A、Becausetheyneedtolookforcustomerseverywhere.B、Becausetheydon’twanttoworkinanormaloffice.C、Becausetheycan’t
最新回复
(
0
)