首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设矩阵A=(α1,α2,α3),其中α1,α2,α3是4维列向量,已知非齐次线性方程组Ax=b的通解为 x=k(1,-2,3)T+(1,2,-1)T,k为任意常数. 试求α1,α2,α3的一个极大线性无关组,并把向量b用此极大线性无关组线性表示;
设矩阵A=(α1,α2,α3),其中α1,α2,α3是4维列向量,已知非齐次线性方程组Ax=b的通解为 x=k(1,-2,3)T+(1,2,-1)T,k为任意常数. 试求α1,α2,α3的一个极大线性无关组,并把向量b用此极大线性无关组线性表示;
admin
2021-02-25
61
问题
设矩阵A=(α
1
,α
2
,α
3
),其中α
1
,α
2
,α
3
是4维列向量,已知非齐次线性方程组Ax=b的通解为
x=k(1,-2,3)
T
+(1,2,-1)
T
,k为任意常数.
试求α
1
,α
2
,α
3
的一个极大线性无关组,并把向量b用此极大线性无关组线性表示;
选项
答案
由题设条件可知ξ=(1,-2,3)
T
是对应的齐次线性方程组Ax=0的一个基础解系,所以r(A)=3-1=2;η=(1,2,-1)
T
为非齐次线性方程组Ax=b的一个特解.于是有 [*] 由(1)可得α
1
=2α
2
-3α
3
,即α
1
可用α
2
,α
3
线性表示,则
2
,α
3
线性无关,否则r(α
1
,α
2
,α
3
)=1与r(A)=2矛盾, 所以α
1
,α
2
,α
3
的一个极大线性无关组可取为α
2
,α
3
. 由(2)可得 b=α
1
+2α
2
-α
3
=4α
2
-4
3
.
解析
本题是抽象型非齐次线性方程组的典型情形.只要从题设条件求得对应齐次线性方程组Ax=0的一个基础解系与非齐次线性方程组Ax=b的一个特解即可.其中一个关键问题仍是确定系数矩阵A的秩,由此可知基础解系中包含线性无关解向量个数.
转载请注明原文地址:https://kaotiyun.com/show/Ma84777K
0
考研数学二
相关试题推荐
设u=u(χ,y)有二阶连续偏导数,证明:在极坐标变换χ=rcosθ,y=rsinθ下有
设f(x)为连续函数,试证明:若f(x)为奇函数,则f(x)的一切原函数均为偶函数;若f(x)为偶函数,则有且仅有一个原函数为奇函数.
将n阶可逆方阵A的第i行与第j行对换后的矩阵记作B,(1)证明:B可逆;(2)求AB-1.
设A为n阶可逆矩阵,A*为A的伴随矩阵,证明:(A*)T=(AT)*。
设函数y=y(x)在(一∞,+∞)内具有二阶导数,且y’≠0,x=x(y)是y=y(x)的反函数。求变换后的微分方程满足初始条件y(0)=0,y’(0)=的特解。
下列矩阵中两两相似的是
设A,B为三阶矩阵且A不可逆,又AB+2B=O且r(B)=2,则|A+4E|=().
设A,B是n阶可逆矩阵,且A~B,则①A-1~B-1;②AT~BT;③A*~B*;④AB~BA.其中正确的个数是()
设4阶矩阵A=(α1,α2,α3,α4),方程组Ax=β的通解为(1,2,2,1)T+c(1,一2,4,0)T,c任意.记B=(α3,α2,α1,β一α4).求方程组Bx=α1一α2的通解
随机试题
A.山楂与磺胺嘧啶B.金银花与青霉素C.山茱萸与林可霉素D.五倍子与多酶片E.石麦汤与氯氮平具有协同增效作用的中西药联用药组是()。
过滤器分为哪三类?
治疗特发性血小板减少性紫癜出血,应首选
患者男性,28岁,地质勘探工作者。急起发热,伴头腰疼痛,乏力。体检:体温39.5℃,血压80/60mmHg,球结膜充血,颜面及前胸皮肤潮红,肝于肋下1cm.脾肋下未触及。血白细胞25×lO9/L,N0.85.L0.15,PLT36.5×109/L;尿蛋白+
《中华人民共和国环境影响评价法》规定:建设项目的环境影响评价文件自批准之曰起超过五年,方决定该项目开工建设的,其环境影响评价文件应当报原审批部门重新审核;原审批部门应当自收到建设项目环境影响评价文件之日起()内,将审核意见书面通知建设单位。
塔器设备在基础上组装,应在()合格后进行。
不属于职业培训的主要形式有()。
(四)某案中,原被告均为生产经营钙制品的公司。原告生产超微钙,属于传统钙的一种;被告生产巨能钙。被告在发放的广告中采取对比方法,将巨能钙和超微钙的原料来源进行比较,担造数据声称超微钙的原料来源有问题。原告以不正当竞争为由起诉被告,要求其立即停止不
要使菜单项MenuOne在程序运行时失效,使用的语句是()。
Tounderstandthemarketingconcept,itisonlynecessarytounderstandthedifferencebetweenmarketingandselling.Nottooma
最新回复
(
0
)