首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设矩阵A=(α1,α2,α3),其中α1,α2,α3是4维列向量,已知非齐次线性方程组Ax=b的通解为 x=k(1,-2,3)T+(1,2,-1)T,k为任意常数. 试求α1,α2,α3的一个极大线性无关组,并把向量b用此极大线性无关组线性表示;
设矩阵A=(α1,α2,α3),其中α1,α2,α3是4维列向量,已知非齐次线性方程组Ax=b的通解为 x=k(1,-2,3)T+(1,2,-1)T,k为任意常数. 试求α1,α2,α3的一个极大线性无关组,并把向量b用此极大线性无关组线性表示;
admin
2021-02-25
93
问题
设矩阵A=(α
1
,α
2
,α
3
),其中α
1
,α
2
,α
3
是4维列向量,已知非齐次线性方程组Ax=b的通解为
x=k(1,-2,3)
T
+(1,2,-1)
T
,k为任意常数.
试求α
1
,α
2
,α
3
的一个极大线性无关组,并把向量b用此极大线性无关组线性表示;
选项
答案
由题设条件可知ξ=(1,-2,3)
T
是对应的齐次线性方程组Ax=0的一个基础解系,所以r(A)=3-1=2;η=(1,2,-1)
T
为非齐次线性方程组Ax=b的一个特解.于是有 [*] 由(1)可得α
1
=2α
2
-3α
3
,即α
1
可用α
2
,α
3
线性表示,则
2
,α
3
线性无关,否则r(α
1
,α
2
,α
3
)=1与r(A)=2矛盾, 所以α
1
,α
2
,α
3
的一个极大线性无关组可取为α
2
,α
3
. 由(2)可得 b=α
1
+2α
2
-α
3
=4α
2
-4
3
.
解析
本题是抽象型非齐次线性方程组的典型情形.只要从题设条件求得对应齐次线性方程组Ax=0的一个基础解系与非齐次线性方程组Ax=b的一个特解即可.其中一个关键问题仍是确定系数矩阵A的秩,由此可知基础解系中包含线性无关解向量个数.
转载请注明原文地址:https://kaotiyun.com/show/Ma84777K
0
考研数学二
相关试题推荐
a,b取何值时,方程组有解?
已知线性方程组问k1和k2各取何值时,方程组无解?有唯一解?有无穷多组解?在方程组有无穷多组解时,试求出一般解.
设λ为可逆方阵A的特征值,且χ为对应的特征向量,证明:(1)λ≠0;(2)为A-1的特征值,且χ为对应的特征向量;(3)为A*的特征值,且χ为对应的特征向量.
设二阶常系数线性微分方程y"+ay’+by=cex有特解y=e2x+(1+x)ex,确定常数a,b,c,并求该方程的通解.
设矩阵A=的特征值之和为1,特征值之积为-12(b>0).(1)求a、b的值;(2)求一个可逆矩阵P,使P-1AP=A为对角矩阵.
设α1,α2,β1,β2为三维列向量组,且α1,α2与β1,β2都线性无关.(1)证明:至少存在一个非零向量可同时由α1,α2和β1,β2线性表不;(2)设α1=,α2=,β1=,β2=,求出可由两组向量同时线性表示的向量.
下列矩阵中两两相似的是
设a1,a2,a3是四元非齐次方程组Ax=b的三个解向量,且秩r(A)=3,a1=(1,2,3,4)T,a2+a3=(0,1,2,3)T,c表示任意常数,则线性方程组Ax=b的通解x=().
设A=,则下列矩阵中与A合同但不相似的是
随机试题
我国少数民族区域建立的第一个民主自治政府是()
在盛唐诗坛上,王昌龄以擅长________________著称。
A.Ⅰ类水B.Ⅱ类水C.Ⅲ类水D.Ⅳ类水E.Ⅴ类水适用于农业用水区及一般景观要求水域
编制城市规划一般可分为()两个阶段。
根据FIDIC合同条件的规定,下列关于索赔程序和索赔事件的说法中,错误的是()。
工程监理单位与所监理工程的()有隶属关系时,不得承担该工程的监理业务。
许先生打算10年后积累15.2万元用于子女教育基金,在投资报酬率5%时,下列组合可以实现其子女教育基金目标的有()。(答案取近似数值)
在计算应纳税所得额时,企业支付的广告费准予扣除()。企业共调增应纳税所得额()。
我国现在实行的义务教育的年限是()。
虽然有些山寨产品的确能给某些消费者带来一定的价值,但总体来说,山寨文化的泛滥与其说是对草根创新精神的标榜和昭彰,不如说是对中国知识产权意识尚不足的裸露与讽刺。对于百分之九十九的山寨厂商来说,他们的前途只有一个,就是被淘汰。更令人焦虑的是,他们有可能把原本走
最新回复
(
0
)