首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为二阶矩阵,P=(α,Aα),其中α是非零向量且不是A的特征向量. 若A2α+Aα-6α=0,求P-1AP,并判断A是否相似于对角矩阵.
设A为二阶矩阵,P=(α,Aα),其中α是非零向量且不是A的特征向量. 若A2α+Aα-6α=0,求P-1AP,并判断A是否相似于对角矩阵.
admin
2022-09-22
94
问题
设A为二阶矩阵,P=(α,Aα),其中α是非零向量且不是A的特征向量.
若A
2
α+Aα-6α=0,求P
-1
AP,并判断A是否相似于对角矩阵.
选项
答案
解法一 由已知有A
2
α=-Aα+6α, 于是AP=A(α,Aα)=(Aα,A
2
α)=(Aα,-Aα+6α) =(α,Aα)[*],故有P
-1
AP=[*] 因为P可逆, 因此,可得A与[*]相似,又[*]=(λ+3)·(λ-2)=0, [*]λ
1
=-3,λ
2
=2, 所以可得A的特征值也为-3,2.于是A可相似对角化. 解法二 P
-1
AP同解法一. 由A
2
α+Aα-6α=0, 得(A
2
+A-6E)α=0, 即(A+3E)(A-2E)α=0, 由α≠0得(A
2
+A-6E)x=0有非零解, 故|(A+3E)(A-2E)|=0, 得|A+3E|=0或|A-2E|=0, 若|A+3E|≠0,则有(A-2E)α=0,故Aα=2α与题意矛盾, 故|A+3E|=0,同理可得|A-2E|=0. 于是A的特征值为λ
1
=-3,λ
2
=2, A有2个不同特征值,故A可相似对角化.
解析
转载请注明原文地址:https://kaotiyun.com/show/bPf4777K
0
考研数学二
相关试题推荐
抛物线y2=ax(a>0)与x=1所围面积为,则a=_______.
若二次型f(x1,x2,x3)=x12+4x22+4x32+2λx1x2-2x1x3+4x2x3为正定二次型,则λ的取值范围是_____.
设两曲线y=f(x)与y=∫0arctanxdt在点(0,0)处有相同的切线,则=___________.
设,则这三个积分的大小顺序是________<________<________.
已知(x-1)y’’-xy’+y=0的一个解是y1=x,又知=ex-(x2+x+1),y*=-x2-1均是(x-1)y’’-xy’+y=(x-1)2的解,则此方程的通解是y=_______.
设u=u(x,y)在全平面有连续偏导数,(I)作极坐标变换x=rcosθ,y=rsinθ,求的关系式;(Ⅱ)若求证:u(x,y)=u(0,0)为常数.
设二次型f(χ1,χ2,χ3)=XTAX,tr(A)=1,又B=且AB=O.(1)求正交矩阵Q,使得在正交变换X=QY,下二次型化为标准形.(2)求矩阵A.
一个容器的内表面侧面由曲线(0≤x≤2,y>0)绕x轴旋转而成,外表面由曲线x=在点的切线位于点与x轴交点之间的部分绕x轴旋转而成,此容器材质的密度为μ.求此容器自身的质量M及其内表面的面积S.
[2014年]当x→0+时,若lnα(1+2x),(1一cosx)1/α均是比x高阶的无穷小,则α的取值范围是().
曲线y=arctanx在横坐标为1的点处的切线方程是________;法线方程是________.
随机试题
患者,男,25岁。突感上腹部剧痛。检查:血压130/80mmHg,脉搏110次/分,板样腹。肠鸣音消失。血红蛋白120g/L,血白细胞计数8.0×109/L。提示病情危险的是
某县公安局因张某拒绝交纳罚款,将张某汽车扣押一个月后,该局通知张某将汽车领回,但该车在扣押期间被使用,因发生交通事故而遭到部分损坏下列说法正确的是()
对于非施工单位原因造成的质量问题,应当由______返修,______承担责任。()
通过信函寻找代理商的优点是()。
简述课程实施中应注意的基本问题。
面对居高不下的房价,房租价格或许真的不算贵,但是为什么年轻人都觉得房租高呢?因为买房带来的远远不止居住的价值,但是租房,只能租来居住的价值。以下不能支持上述结论的是:
某公司办公室茶水间提供自助式收费饮料,职员拿完饮料后,自己把钱放到特设的收款箱中,研究者为了判断职员在无人监督时,其自律水平会受哪些因素的影响,特地在收款箱上方贴了一张装饰图片,每周一换。装饰图片有时是一些花朵,有时是一双眼睛。一个有趣的现象出现了:贴着“
设连续型随机变量X的分布函数为,试求:常数A和B;
Theteachersaidthattheearth______aroundthesun.
AnAustraliancompanyispreparedtogiveawaycolorTVsets,furcoats,diamondringsandachancetowin12000Australiandol
最新回复
(
0
)