首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为二阶矩阵,P=(α,Aα),其中α是非零向量且不是A的特征向量. 若A2α+Aα-6α=0,求P-1AP,并判断A是否相似于对角矩阵.
设A为二阶矩阵,P=(α,Aα),其中α是非零向量且不是A的特征向量. 若A2α+Aα-6α=0,求P-1AP,并判断A是否相似于对角矩阵.
admin
2022-09-22
64
问题
设A为二阶矩阵,P=(α,Aα),其中α是非零向量且不是A的特征向量.
若A
2
α+Aα-6α=0,求P
-1
AP,并判断A是否相似于对角矩阵.
选项
答案
解法一 由已知有A
2
α=-Aα+6α, 于是AP=A(α,Aα)=(Aα,A
2
α)=(Aα,-Aα+6α) =(α,Aα)[*],故有P
-1
AP=[*] 因为P可逆, 因此,可得A与[*]相似,又[*]=(λ+3)·(λ-2)=0, [*]λ
1
=-3,λ
2
=2, 所以可得A的特征值也为-3,2.于是A可相似对角化. 解法二 P
-1
AP同解法一. 由A
2
α+Aα-6α=0, 得(A
2
+A-6E)α=0, 即(A+3E)(A-2E)α=0, 由α≠0得(A
2
+A-6E)x=0有非零解, 故|(A+3E)(A-2E)|=0, 得|A+3E|=0或|A-2E|=0, 若|A+3E|≠0,则有(A-2E)α=0,故Aα=2α与题意矛盾, 故|A+3E|=0,同理可得|A-2E|=0. 于是A的特征值为λ
1
=-3,λ
2
=2, A有2个不同特征值,故A可相似对角化.
解析
转载请注明原文地址:https://kaotiyun.com/show/bPf4777K
0
考研数学二
相关试题推荐
设A=E+αβT,其中α,β均为n维列向量,αTβ=3,则|A+2E|=____________。
设函数在x=0处连续,则a=______。
设可逆方阵A有特征值A,则(A*)2+E必有一个特征值为________.
设z=xf(x+y)+g(xy,x2+y2),其中f,g分别二阶连续可导和二阶连续可偏导,则=_______.
当0≤θ≤π时,对数螺旋r=eθ的弧长为_________。
设A是三阶方阵,且|A—E|=|A+2E|=|2A+3E|=0,则|2A*一3E|=______.
设I1=(χ4+y4)dσ,I2=(χ4+y4)dσ,I3=2χ2y2dσ则这三个积分的大小顺序是________<________<________.
四元方程组Ax=b的三个解是α1,α2,α3,其中α1=(1,1,1,1)T,α2+α3=(2,3,4,5)T,如r(A)=3,则方程组Ax=b的通解是_________.
曲线的斜渐近线方程为__________。
随机试题
设函数f(x)=x2(一π<x<π)的傅里叶级数展开式,则其系数a2=_______.
该病人的最可能的诊断是该病人治疗中最主要的是
按形态学分类,再生障碍性贫血属于
治疗胃痛饮食停滞证,应首选()
女,43岁,右下腹持续性疼痛5天,伴恶心、呕吐,呕出物为胃内容物。体温38.5℃。体检发现右下腹5cm×5.5cm大小肿块,触痛明显。最可能的诊断是
(2005年)某投资项目全投资的净现金流量如下:若该项目初始投资中借款比例为50%,贷款年利率为8%,初始投资中自有资金的筹资成本为12%,则当计算该项目自有资金的净现值时,基准折现率至少应取()。
一个单因素方差分析中,已知F(2,24)=0.90。则F检验的结果
吴敬梓《儒林外史》
Properlightingisanecessaryforgoodeyesighteventhoughhumannightvisioncanbetemporarilyimpairedbyextremeflasheso
OnethingisclearafterthetragicdeathofFreddieGray,theyoungAfrican-Americanmanwhowasfatallyinjuredwhileinpolic
最新回复
(
0
)