首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设a0=1,a1=0,an+1=(nan+an-1)(n=1,2,3…),S(x)为幂级数anxn的和函数. 证明(1-x)S’(x)-xS(x)=0(x∈(-1,1)),并求S(x)表达式.
设a0=1,a1=0,an+1=(nan+an-1)(n=1,2,3…),S(x)为幂级数anxn的和函数. 证明(1-x)S’(x)-xS(x)=0(x∈(-1,1)),并求S(x)表达式.
admin
2017-02-21
99
问题
设a
0
=1,a
1
=0,a
n+1
=
(na
n
+a
n-1
)(n=1,2,3…),S(x)为幂级数
a
n
x
n
的和函数.
证明(1-x)S’(x)-xS(x)=0(x∈(-1,1)),并求S(x)表达式.
选项
答案
S’(x)=[*] (1-x)S’(x)=(1-x)[*]na
n
x
n-1
=[*]na
n
x
n-1
=[*]na
n
x
n
=[*](n+1)a
n+1
x
n
-[*]na
n
x
n
=[*][(n+1)a
n+1
-na
n
]x
n
+a
1
x xS(x)=[*]a
n+1
x
n
,所以 (1-x)S’(x)-xS(x)=[*][(n+1)a
n+1
-na
n
-a
n-1
]x
n
+a
1
x 由a
n+1
=[*](na
n
+a
n-1
)可知(n+1)a
n+1
-na
n
-a
n-1
=0,由a
1
=0,所以(1-x)S’(x)-xS(x)=0 解微分方程得S(x)=[*],由S(0)=a
n
=1[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/bTH4777K
0
考研数学三
相关试题推荐
设α1,α2,…,αm为一个向量组,且α1≠θ,每一个向量αi(i>1)都不能由α1,α2,…,αi-1线性表示,求证:α1,α2,…,αm线性无关.
一串钥匙,共有10把,其中有4把能打开门,因开门者忘记哪些能打开门,便逐把试开,求下列事件的概率:最多试3把钥匙就能打开门
设函数f(x),g(x)具有二阶导数,且g"(x)
求函数f(x)=(1-x)/(1+x)在x=0点处带拉格朗口余项的n阶泰勒展开式.
设α1,α2,…,αs均为n维向量,下列结论不正确的是().
设A,B为满足AB=0的任意两个非零矩阵,则必有
设A,B均为n阶矩阵,|A|=2,|B|=-3,则|2A*B-1|=_______.
证明下列命题:设f(x)在[0,1]连续,在(0,1)二阶可导且f(0)=f(1)=0,f’’(x)0(x∈(0,1)).
设则f(x,y)在点O(0,0)处()
设f(x)在x=0处连续,且则曲线y=f(x)在点(0,f(0))处的切线方程为________.
随机试题
下列哪项不是SLE淋巴结肿大的临床表现
检查脊柱的压痛的方法和临床意义正确的是
4周岁小儿的身长应为
在药品零售企业中,需要凭处方方可销售的特殊药品复方制剂除了()。
(2005年)pz波函数角度分布形状为()。
按时间分类,支付可分为()。
根据《个人外汇管理办法》的规定,个人外汇账户按账户性质可划分为()。
若商业银行核心资本距监管当局的要求相差较远,可以采取()的方式来提高资本充足率。
已知A是m×n矩阵,m<n证明:AAT是对称阵,并且AAT正定的充要条件是r(A)=m.
Onwhataspectofweatherforecastingdoestheconversationfocus?
最新回复
(
0
)