首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,1]上有一阶连续导数,且f(0)=0,∫01xf(x)dx=0. 证明:方程x[f(x)]2+f’(x)∫0xtf(t)dt=0在(0,1)内至少有两个不同的实根.
设f(x)在[0,1]上有一阶连续导数,且f(0)=0,∫01xf(x)dx=0. 证明:方程x[f(x)]2+f’(x)∫0xtf(t)dt=0在(0,1)内至少有两个不同的实根.
admin
2022-05-20
73
问题
设f(x)在[0,1]上有一阶连续导数,且f(0)=0,∫
0
1
xf(x)dx=0.
证明:方程x[f(x)]
2
+f’(x)∫
0
x
tf(t)dt=0在(0,1)内至少有两个不同的实根.
选项
答案
令F(x)=f(x)∫
0
x
tf(t)dt,由于 F’(x)=x[f(x)]
2
+f’(x)∫
0
x
tf(t)dt, 故只要证明F(x)有三个零点,再利用罗尔定理即可. 由A[(α
1
+α
3
)一(α
1
+α
2
)]=A(α
3
-α
2
)=Aα
3
-Aα
2
=b-b=0, 所以 (α
1
+α
3
)-(α
1
+α
2
)=(1,1,2,1)
T
是Ax=0的基础解系,从而Ax=b的通解为 F(0)=0,F(η)=0,F(1)=0, 在[0,η]与[η,1]上分别对F(x)利用罗尔定理,有 F’(ξ
1
)=0,ξ
1
∈(0,η),F’(ξ
2
)=0,ξ
2
∈(η,1). 故原方程有两个不同的实根.
解析
转载请注明原文地址:https://kaotiyun.com/show/bUR4777K
0
考研数学三
相关试题推荐
A、 B、 C、 D、 A
设A为j阶方阵,A.,A:,A,表示A中三个列向量,则|A|=().
10/19
把当x→0时的无穷小量α=ln(1+x2)一ln(1一x4),β=∫0x2tantdt,γ=arctanx一x排列起来,使排在后面的是前一个的高阶无穷小,则正确的排列次序是
设有方程组求方程组(i)与(ii)的基础解系与通解;
一个盒子中5个红球,5个白球,现按照如下方式,求取到2个红球和2个白球的概率.(1)一次性抽取4个球;(2)逐个抽取,取后无放回;(3)逐个抽取,取后放回.
已知z=f(x,y)满足:dz=2xdx-4ydy且f(0,0)=5.(1)求f(x,y);(2)求f(x,y)在区域D={(x,y)|x2+4y2≤4}上的最小值和最大值.
计算下列二重积分:设D是由x≥0,y≥x与x2+(y-b)2≤b2,x2+(y-a)2≥a2(0<a<b)所围成的平面区域,求xydxdy.
求下列极限:
随机试题
A集团是一家在上海证券交易所挂牌上市的奶制品企业,拥有液态奶、冷饮、奶粉、酸奶和原奶五大事业部,所属企业近百个,旗下有纯牛奶、乳饮料、雪糕、冰激凌、奶粉、酸奶、奶酪等1000多个产品品种。A集团奶粉系列有十二款产品,其中“养生益族”让中老年人焕发年轻活力;
患者,男,42岁。缺失,要求固定义齿修复。口腔检查:不松,活髓,无龋损。缺隙大小正常,牙槽嵴无特殊。为该患者实施了全冠烤瓷桥修复。固定桥黏固后立即出现过敏性疼痛若该患者固定义齿戴用二年后基牙出现疼痛,最可能的原因与下述哪一项无关
根据《建筑法》,在建工程因故中止施工的,建设单位应当自中止施工之日起()内,向施工许可证颁发机关报告,并按照规定做好建筑工程的维护管理工作。
建筑产品的单件性决定了职业健康安全与环境管理的()。
下列资产项目中,属于流动资产项目的有()。
制定财务目标,要遵从的原则有()。
在以下企业组织形式中,会导致双重课税的有()。
我国四大佛教名山分别是五台山、峨眉山、武当山和九华山。()
在考生文件夹下建立一个名为TESE的文件夹。
Twosubstituteswereusedduringthebasketballgames.
最新回复
(
0
)