首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,1]上有一阶连续导数,且f(0)=0,∫01xf(x)dx=0. 证明:方程x[f(x)]2+f’(x)∫0xtf(t)dt=0在(0,1)内至少有两个不同的实根.
设f(x)在[0,1]上有一阶连续导数,且f(0)=0,∫01xf(x)dx=0. 证明:方程x[f(x)]2+f’(x)∫0xtf(t)dt=0在(0,1)内至少有两个不同的实根.
admin
2022-05-20
87
问题
设f(x)在[0,1]上有一阶连续导数,且f(0)=0,∫
0
1
xf(x)dx=0.
证明:方程x[f(x)]
2
+f’(x)∫
0
x
tf(t)dt=0在(0,1)内至少有两个不同的实根.
选项
答案
令F(x)=f(x)∫
0
x
tf(t)dt,由于 F’(x)=x[f(x)]
2
+f’(x)∫
0
x
tf(t)dt, 故只要证明F(x)有三个零点,再利用罗尔定理即可. 由A[(α
1
+α
3
)一(α
1
+α
2
)]=A(α
3
-α
2
)=Aα
3
-Aα
2
=b-b=0, 所以 (α
1
+α
3
)-(α
1
+α
2
)=(1,1,2,1)
T
是Ax=0的基础解系,从而Ax=b的通解为 F(0)=0,F(η)=0,F(1)=0, 在[0,η]与[η,1]上分别对F(x)利用罗尔定理,有 F’(ξ
1
)=0,ξ
1
∈(0,η),F’(ξ
2
)=0,ξ
2
∈(η,1). 故原方程有两个不同的实根.
解析
转载请注明原文地址:https://kaotiyun.com/show/bUR4777K
0
考研数学三
相关试题推荐
[*]
设函数f(x)在[1,+∞)上连续,若由曲线y=f(x),直线x=1,x=t(t>1)与x轴所围成的平面图形绕x轴旋转一周所成的旋转体积为V(t)=π/3[t2f(t)-f(1)].试求y=f(x)所满足的微分方程,并求该微分方程满足条件y|x=2=2/9
若=a≠0,则().
设生产某种产品必须投入两种要素,x1和x2分别为两要素的投入量,Q为产出量,若生产函数为Q=2x1αx2β,其中α,β为正常数,且α+β=1.假设两种要素的价格分别为p1和p2,试问:当产出量为12时,两要素各投入多少可以使得投入总费用最小?
设总体X服从(0,θ](θ>0)上的均匀分布,x1,x2,…,xn是来自总体X的样本,求θ的最大似然估计量与矩估计算.
设三阶方阵A满足Aα1=0,Aα2=2α1+α2,4α3=一α1+3α2一α3,其中α1=(1,1,0)T,α2=(0,1,1)T,α3=(1,0,1)T.(Ⅰ)求A;(Ⅱ)求对角阵A,使得A~A.
改变积分次序∫0adxf(x,y)dy.
设正项级数un收敛,证明收敛,并说明反之不成立.
设y=ex为微分方程xy’+P(x)y=x的解,求此微分方程满足初始条件y(ln2)=0的特解.
设则f"’(0)=_______.
随机试题
男性,30岁,背部刀伤,伤口流血2小时。体格检查:神志尚清楚,诉口渴,皮肤苍白,稍冷,脉搏110次/分,血压90/70mmHg,脉压小,表浅静脉塌陷,尿少估计此病人失血量约占全身血容量的多少
A、酸B、苦C、甘D、辛E、咸属于“水”的味是
在砌体墙的洞口上部,不用设置过梁的最大宽度为()mm。
明清时期的__________、__________、__________(工艺)已经发展到中国古代的最高水平。
计算:
“玉不琢,不成器;人不学,不知道。”论述的是教育与__________的关系。
若f"(x)不变号,且曲线y=f(x)在点(1,1)处的曲率圆为x2+y2=2,则函数f(x)在区间(1,2)内()
(2011上项管)以下关于企业战略说法中,不正确的是______。
数据流程图具有的特性是
Whatdoesthemanwantticketsfor?
最新回复
(
0
)