首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,1]上有一阶连续导数,且f(0)=0,∫01xf(x)dx=0. 证明:方程x[f(x)]2+f’(x)∫0xtf(t)dt=0在(0,1)内至少有两个不同的实根.
设f(x)在[0,1]上有一阶连续导数,且f(0)=0,∫01xf(x)dx=0. 证明:方程x[f(x)]2+f’(x)∫0xtf(t)dt=0在(0,1)内至少有两个不同的实根.
admin
2022-05-20
63
问题
设f(x)在[0,1]上有一阶连续导数,且f(0)=0,∫
0
1
xf(x)dx=0.
证明:方程x[f(x)]
2
+f’(x)∫
0
x
tf(t)dt=0在(0,1)内至少有两个不同的实根.
选项
答案
令F(x)=f(x)∫
0
x
tf(t)dt,由于 F’(x)=x[f(x)]
2
+f’(x)∫
0
x
tf(t)dt, 故只要证明F(x)有三个零点,再利用罗尔定理即可. 由A[(α
1
+α
3
)一(α
1
+α
2
)]=A(α
3
-α
2
)=Aα
3
-Aα
2
=b-b=0, 所以 (α
1
+α
3
)-(α
1
+α
2
)=(1,1,2,1)
T
是Ax=0的基础解系,从而Ax=b的通解为 F(0)=0,F(η)=0,F(1)=0, 在[0,η]与[η,1]上分别对F(x)利用罗尔定理,有 F’(ξ
1
)=0,ξ
1
∈(0,η),F’(ξ
2
)=0,ξ
2
∈(η,1). 故原方程有两个不同的实根.
解析
转载请注明原文地址:https://kaotiyun.com/show/bUR4777K
0
考研数学三
相关试题推荐
[*]
-4
设随机变量X的概率密度为,令Y=X2,F(x,y)为二维随机变量(X,Y)的分布函数,求:(I)y的概率密度fY(y);(Ⅱ)cov(X,Y);(Ⅲ)F(-1/2,4).
设总体X~N(µ,22),X1,X2,…,Xn为取自总体的一个样本,`X为样本均值,要使E(`X—µ)2≤0.1成立,则样本容量n至少应取__________.
设有级数证明此级数的和函数y(x)满足微分方程y’’—y=—l;
参数a取何值时,线性方程组有无数个解?并求其通解.
当x→0+时,下列无穷小中,阶数最高的是().
函数y=lnx在区间[1,e]上的平均值为_________.
上的平均值为______.
设函数f(x)在[0,+∞]上连续,且f(0)>0,已知经在[0,x]上的平均值等于f(0)与f(x)的几何平均值,求f(x).
随机试题
A.Na+B.K+C.HCO3-D.Ca2+E.Cl-神经细胞膜在静息时通透性最大的离子是
日本药品和药事监督管理层次分为中央级、都道府县级和市町村级三级。权力集中于中央政府厚生省药务局,地方政府为贯彻执行部门。()
当上市公司发行在外的普通股股数和实现的净利润一定时,下列各项中,影响市盈率的是()。
2013年8月5日,甲基金会取得一项捐款100万元,捐赠人限定将该款项用于购置化疗设备。2014年1月15日,甲基金会购入设备,价值80万元。2014年2月20日,经与捐赠人协商,捐赠人同意将剩余的款项20万元留归甲基金会自主使用。甲基金会下列处理中正确的
清初“四王”中,取得“熟不甜,生不涩,淡而厚,实而清”的收获的画家是()。
你所在辖区内的一家房地产开发商和业主因为交房和合同上不一致发生冲突,要你去处理,请问你会如何处理?
Inrecentyearsmanycountriesoftheworldhavebeenfacedwiththeproblemofhowtomaketheirworkersmoreproductive.Some
4/π
下列描述中正确的是
Itwasreally_____ofyoutoremembermybirthday.(2011-73)
最新回复
(
0
)