首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)在(一∞,+∞)上有定义,则下述命题中正确的是( )
设函数f(x)在(一∞,+∞)上有定义,则下述命题中正确的是( )
admin
2018-12-19
80
问题
设函数f(x)在(一∞,+∞)上有定义,则下述命题中正确的是( )
选项
A、若f(x)在(一∞,+∞)上可导且单调增加,则对一切x∈(一∞,+∞),都有f’(x)>0。
B、若f(x)在点x
0
处取得极值,则f’(x
0
)=0。
C、若f’’(x
0
)=0,则(x
0
,f(x
0
))是曲线y=f(x)的拐点。
D、若f’(x
0
)=0,f’’(x
0
)=0,f’’’(x
0
)≠0,则x
0
一定不是f(x)的极值点。
答案
D
解析
若在(一∞,+∞)上f’(x)>0,则一定有f(x)在(一∞,+∞)上单调增加,但可导函数f(x)在(一∞,+∞)上单调增加,可能有f’(x)≥0。例如f(x)=x
3
在(一∞,+∞)上单调增加,f’(0)=0。故不选A。
f(x)若在x
0
处取得极值,且f’(x
0
)存在,则有f’(x
0
)=0,但当f(x)在x
0
处取得极值,在x
0
处不可导,就得不到f’(x
0
)=0,例如f(x)=|x|在x
0
=0处取得极小值,它在x
0
=0处不可导,故不选B。
如果f(x)在x
0
处二阶导数存在,且(x
0
,f(x
0
))是曲线的拐点,则f’’(x
0
)=0,反之不一定,例如f(x)=x
4
在x
0
=0处f’’(0)=0,但f(x)在(一∞,+∞)没有拐点,故不选C。故选D。
转载请注明原文地址:https://kaotiyun.com/show/bVj4777K
0
考研数学二
相关试题推荐
高为l的柱体形贮油罐,底面是长轴为2a,短轴为2b的椭圆现将贮油罐平放,当油罐中油面被时(如图3—6),计算油的质量.(长度单位为m,质量单位为kg,油的皴为常数ρkg/m3)
设可微函数f(x,y)在点(x0,y0)取得极小值,则下列结论正确的是()
(2014年)设α1,α2,α3均为3维向量,则对任意常数k,l,向量组α1+kα3,α2+lα3线性无关是向量组α1,α2,α3线性无关的【】
(2003年)设向量组Ⅰ:α1,α2,…,αr可由向量组Ⅱ:β1,β2,…,βr线性表示,则【】
(2002年)设函数f(u)可导,y=f(χ2)当自变量χ在χ=-1处取得增量△χ=-0.1时,相应的函数增量△y的线性主部为0.1,则f′(1)=【】
(1992年)求微分方程y〞-3y′+2y=χeχ的通解.
(2002年)设y=y(χ)是二阶常系数微分方程y〞+py′+qy=e3χ满足初始条件y(0)=y′(0)=0的特解,则当χ→0时,函数的极限.【】
设方阵A1与B1合同,A2与B2合同,证明:合同.
设二阶常系数线性微分方程,y’’+ay’+by=cex有特解y=e2x+(1+x)ex,确定常数a,b,c,并求该方程的通解.
(88年)设f(x)=f[φ(x)]=1一x,且φ(x)≥0.求φ(x)及其定义域.
随机试题
音乐教学应该是师生共同________、________、________、________、________和享受音乐美的过程。
出租车经营单位对出租车驾驶员采取单车承包或承租方式运营,出租车驾驶员从事客货营运取得的收入,按()项目征收个人所得税。
《食品安全法》对食品安全的基本要求是()。
确定培训需求的手段主要有:()。
请认真阅读下列材料,并按要求作答。问题:如指导低年段小学生学唱本歌曲,试拟定教学目标。
社会保障的对象是特定社会成员。()
以下名句中揭示的哲学道理不同于其他三项的是()。
A、 B、 C、 D、 A
阅读程序:PrivateSubFormClick()a=0Forj=1To15a=a+jMod3NextjPrintaEndSub程序运行后,单击窗体,输出结果是
Youmaysaythatthebusinessofmarkingbooksisgoingtoslowdownyourreading.Itprobablywill.That’soneofthe【B1】_____
最新回复
(
0
)