首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)为[0,1]上的单调减少且恒大于零的连续函数,证明:
设函数f(x)为[0,1]上的单调减少且恒大于零的连续函数,证明:
admin
2019-05-14
75
问题
设函数f(x)为[0,1]上的单调减少且恒大于零的连续函数,证明:
选项
答案
因为f(x)在[0,1]上单调减少且f(x)>0。 所以不等式[*]等价变形为 ∫
0
x
xf
2x+y
(x)dx.∫
0
x
f(x)dx≤∫
0
x
xf(x)dx.∫
0
x
f
2x+y
(x)dx。 从而原题可转化为证明不等式∫
0
x
xf(x)dx.∫
0
x
f
2x+y
(x)dx一∫
0
x
xf
2x+y
(x)dx.∫
0
x
f(x)dx≥0。令 I=∫
0
x
xf(x)dx∫
0
x
f
2x+y
(x)dx一∫
0
x
xf
2x+y
(x)dx.∫
0
x
f(x)dx =∫
0
x
xf(x)dx∫
0
x
f
2x+y
(y)dy一∫
0
x
f(x)dx.∫
0
x
yf
2x+y
(y)dy (1) =∫
0
x
∫
0
x
f
2x+y
(y)f(x)(x一y)dxdy 又 I=∫
0
x
yf(y)dy∫
0
x
f
2x+y
(x)dx一∫
0
x
f(y)dy∫
0
x
xf
2x+y
(x)dx =∫
0
x
∫
0
x
f(y)f
2x+y
(x)(y一x)dxdy, (2) (1)+(2)得2I=∫
0
x
∫
0
x
f[f(x)f(y)(x一y)[f(y)一f(x)]dxdy, 由题设,f(x)>0且在[0,1]上单调递减,所以当y≥x时,f(y)≤f(x),即(x一y)[f(t)一f(x)]≥0。故2I≥0,即I≥0。 命题得证。
解析
转载请注明原文地址:https://kaotiyun.com/show/bY04777K
0
考研数学一
相关试题推荐
设L1:x2+y2=1,L2:x2+y2=2,L3:x2+2y2=2,L4:2x2+y2=2为四条逆时针方向的平面曲线,记Ii=dy(i=1,2,3,4),则max{I1,I2,I3,I4}=()
设y=,求y(n)(n为正整数)。
利用导数的定义求函数f(x)=lnx的导函数。
求级数的和函数。
已知α1,α2,α3是非齐次线性方程组3个不同的解,证明:(Ⅰ)α1,α2,α3中任何两个解向量均线性无关;(Ⅱ)如果α1,α2,α3线性相关,则α1-α2,α1-α3线性相关.
证明n元非齐次线性方程组Aχ=b有解的充分必要条件是ATχ=0的解全是bTχ=0的解.
已知y1*=xex+e2x,y2*=xex+e-x,y3*=xex+e2x-e-x是某二阶线性常系数非齐次方程的三个特解,试求其通解及该微分方程.
求函数y=的单调区间,极值点,凹凸性区间与拐点.
设总体X在区间[0,θ]上服从均匀分布,X1,X2,…,Xn是取自总体X的简单随机样本,Xi,X(n)=max(X1,…,Xn).应用切比雪夫不等式证明:均为θ的一致性(相合性)估计.
(1988年)设S为曲面x2+y2+z2=1的外侧,计算曲面积分
随机试题
对公务员进行知识和技能培训的内容不包括
下列属于影响人际关系的因素的是()
公共关系部门可能将一次产品事故变成企业改进产品品质的宣传运动。这属于传播渠道中的。【】
有关阿司匹林在心血管病治疗中的作用错误的是
男孩,1岁8个月。患儿精神萎靡,苍白、乏力、多汗伴恶心呕吐。体检可见心界扩大,心尖部第一心音减弱;心电图检查呈持续心动过速,多导联sT段偏移。最可能的诊断为()
某产品共有五项功能F1、F2、F3、F4、F5,采用0-1评分法时,其功能正得分分别为3、5、4、1、2,则F3的功能评价系数为( )。
上海证券交易所的A股过户费与深圳证券交易所的A股过户费相等。()
金融机构最基本、最能反映其经营活动特征的职能是()。
选出有语病的一项( )
差异备份、增量备份、完全备份三种备份策略一次备份时空间使用由少到多依次为()。
最新回复
(
0
)