首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)为[0,1]上的单调减少且恒大于零的连续函数,证明:
设函数f(x)为[0,1]上的单调减少且恒大于零的连续函数,证明:
admin
2019-05-14
63
问题
设函数f(x)为[0,1]上的单调减少且恒大于零的连续函数,证明:
选项
答案
因为f(x)在[0,1]上单调减少且f(x)>0。 所以不等式[*]等价变形为 ∫
0
x
xf
2x+y
(x)dx.∫
0
x
f(x)dx≤∫
0
x
xf(x)dx.∫
0
x
f
2x+y
(x)dx。 从而原题可转化为证明不等式∫
0
x
xf(x)dx.∫
0
x
f
2x+y
(x)dx一∫
0
x
xf
2x+y
(x)dx.∫
0
x
f(x)dx≥0。令 I=∫
0
x
xf(x)dx∫
0
x
f
2x+y
(x)dx一∫
0
x
xf
2x+y
(x)dx.∫
0
x
f(x)dx =∫
0
x
xf(x)dx∫
0
x
f
2x+y
(y)dy一∫
0
x
f(x)dx.∫
0
x
yf
2x+y
(y)dy (1) =∫
0
x
∫
0
x
f
2x+y
(y)f(x)(x一y)dxdy 又 I=∫
0
x
yf(y)dy∫
0
x
f
2x+y
(x)dx一∫
0
x
f(y)dy∫
0
x
xf
2x+y
(x)dx =∫
0
x
∫
0
x
f(y)f
2x+y
(x)(y一x)dxdy, (2) (1)+(2)得2I=∫
0
x
∫
0
x
f[f(x)f(y)(x一y)[f(y)一f(x)]dxdy, 由题设,f(x)>0且在[0,1]上单调递减,所以当y≥x时,f(y)≤f(x),即(x一y)[f(t)一f(x)]≥0。故2I≥0,即I≥0。 命题得证。
解析
转载请注明原文地址:https://kaotiyun.com/show/bY04777K
0
考研数学一
相关试题推荐
设u(x,y,z)=zarctan,则gradu(1,1,1)=()
级数=___________。
判断级数(p>0为常数)的敛散性。
已知曲线L的方程为y=1一|x|(x∈[一1,1]),起点是(一1,0),终点是(1,0),则曲线积分∫Lxydx+x2dy=___________。
计算二重积分,其中D是由y=x,y=1及y轴所围的平面闭域。
某商店销售某种季节性商品,每售出一件获利5(百元),季度末未售出的商品每件亏损1(百元),以X表示该季节此种商品的需求量,已知X等可能的取值[1,100]中的任一正整数,问商店应提前贮备多少件该种商品,才能使获利的期望值达到最大.
已知α1,α2,α3是非齐次线性方程组3个不同的解,证明:(Ⅰ)α1,α2,α3中任何两个解向量均线性无关;(Ⅱ)如果α1,α2,α3线性相关,则α1-α2,α1-α3线性相关.
已知λ1,λ2是矩阵A两个不同的特征值,α1,α2,…,αs和β1,β2,…,βt分别是矩阵A属于特征值λ1和λ2的线性无关的特征向量.证明:α1,α2,…,αs,β1,β2,…,βt线性无关.
若f(χ1,χ2,χ3)=(aχ1+2χ2-3χ3)2+(χ2-2χ3)2+(χ1+aχ2-χ3)2是正定二次型,则a的取值范围是_______.
设f(x)在[0,1]上连续,且满足Jf(x)dx=0,fxf(x)dx=0,求证:f(x)在(0,1)内至少存在两个零点.
随机试题
在一符合亨利定律的气液平衡系统中,溶质在气相中的摩尔浓度与其在液相中的摩尔浓度的差值为()。
男性,36岁,在喷洒农药乐果6小时后出现头晕、恶心、呕吐、多汗、胸闷、视力模糊,查体:瞳孔明显缩小,朋纤维颤动,步态蹒跚,心率60次/分,首选的处理措施是
辛某,男,67岁,患喘证20余年,冬令发作加重,平素微喘而咳。近日因气候寒冷,咳喘加重,动则喘甚,痰多黏稠色白,喉中略有痰鸣,面色青晦,心慌,畏寒,足冷,形萎神疲,舌淡暗,苔薄白而滑,脉沉弱。本病例治法是
胎儿娩出后,胎盘娩出前,阴道大出血,应选哪种处理方法
交易行为的自主性是指证券公司在买卖证券时,是通过交易所买卖,还是通过其他场所买卖。( )
资本市场服务性开放涉及的领域或业务有多种,其中包括()。
A公司(属于房地产开发企业)自行建造一物业,地下共3层,地上共16层,其中地下3层拟建为用于出租的地下停车场,地上16层拟建为用于出售的房产。A公司采用公允价值模式计量投资性房地产。A公司因地下停车场和将用于出售的房产属于同一个项目、部分开发成本需要在出租
通过Applet的( )方法,可以得到Applet类文档的URL。
TheChildrenRestaurantisverysmallbecause______.TheRestaurantisWelcomed______.
ThePonyExpressIntheUnitedStatestoday,wecansendaletterfromcoasttocoastinjustafewdaysforwellunderhal
最新回复
(
0
)