首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知α1,α2,α3是非齐次线性方程组3个不同的解,证明: (Ⅰ)α1,α2,α3中任何两个解向量均线性无关; (Ⅱ)如果α1,α2,α3线性相关,则α1-α2,α1-α3线性相关.
已知α1,α2,α3是非齐次线性方程组3个不同的解,证明: (Ⅰ)α1,α2,α3中任何两个解向量均线性无关; (Ⅱ)如果α1,α2,α3线性相关,则α1-α2,α1-α3线性相关.
admin
2018-06-12
137
问题
已知α
1
,α
2
,α
3
是非齐次线性方程组3个不同的解,证明:
(Ⅰ)α
1
,α
2
,α
3
中任何两个解向量均线性无关;
(Ⅱ)如果α
1
,α
2
,α
3
线性相关,则α
1
-α
2
,α
1
-α
3
线性相关.
选项
答案
(Ⅰ)如果α
1
,α
2
线性相关,不妨设α
2
=kα
1
,那么 Aα
2
=A(kα
1
)=kAα
1
=kb. 又Aα
2
=b,于是k=1,与α
1
,α
2
不同相矛盾. (Ⅱ)如果α
1
,α
2
,α
3
线性相关,则有不全为0的k
1
,k
2
,k
3
使k
1
α
1
+k
2
α
2
+k
3
α
3
=0,那么 (k
1
+k
2
+k
3
)α
1
=k
2
(α
1
-α
2
)+k
3
(α
1
-α
3
). 由于α
1
是非齐次方程组Aχ=b的解,而α
1
-α
2
,α
1
-α
3
是齐次方程组Aχ=0的解,α
1
不能由α
1
-α
2
,α
1
-α
3
线性表出,故必有k
1
+k
2
+k
3
=0,那么 k
2
(α
1
-α
2
)+k
3
(α
1
-α
3
)=0. 此时k
2
,k
3
不全为0(否则亦有k
1
=0,与k
1
,k
2
,k
3
不全为0相矛盾), 故α
1
-α
2
,α
1
-α
3
线性相关.
解析
转载请注明原文地址:https://kaotiyun.com/show/sUg4777K
0
考研数学一
相关试题推荐
设二次型f(χ1,χ2,χ3)=aχ12+aχ22+(a-1)χ32+2χ1χ3-2χ2χ3.(1)求二次型f的矩阵的所有特征值;(2)若二次型厂的规范形为y12+y22,求a的值.
设A=(1)计算行列式|A|(2)当实数a为何值时,方程组Aχ=β有无穷多解,并求其通解.
曲线y=的拐点的个数为
在区间(-1,1)上任意投一质点,以X表示该质点的坐标.设该质点落在(-1,1)中任意小区间内的概率与这个小区间的长度成正比,则
设f(χ)在[0,1]连续且非负但不恒等于零,记I1=∫01f(χ)dχ,I2=(sinχ)dχ,I3=f(tanχ)dχ,则它们的大小关系为
设A是3阶矩阵,α1,α2,α3都是3维非零列向量,满足Aαi=iαi,(i=1,2,3).记α=α1+α2+α3.①证明α,Aα,A2α线性无关.②设P=(α,Aα,A2α),求P-1AP.
求使不等式对所有的自然数n都成立的最大的数α和最小的数β
假设你是参加某卫视“相亲节目”的男嘉宾,现有n位女嘉宾在你面前自左到右排在一条直线上,每两位相邻的女嘉宾的距离为a(米).假设每位女嘉宾举手时你必须和她去握手,每位女嘉宾举手的概率均为,且相互独立,若Z表示你和一位女嘉宾握手后到另一位举手的女嘉宾处所走的路
设向量组(Ⅰ)与向量组(Ⅱ),若(Ⅰ)可由(Ⅱ)线性表示,且r(Ⅰ)=r(Ⅱ)=r.证明:(Ⅰ)与(Ⅲ)等价.
设函数f(x)连续.求初值问题的解y(x),其中a是正常数.
随机试题
釉质和牙骨质在牙颈部相连的方式是
以下哪项不属瘀血致痛的特点:
A.心率减慢B.腺体分泌减少C.支气管平滑肌舒张D.肾上腺髓质释放肾上腺素E.瞳孔括约肌松弛
患者,女,25岁。连续3个月经周期提前约10天,月经量多,色红质稠,手足心热,舌红,少苔,脉细数,针灸处方主穴为
A.雌一孕激素序贯疗法B.雌一孕激素合并疗法C.绒毛膜促性腺激素促排卵D.孕激素疗法E.雄激素疗法再生障碍性贫血
临床使用不当可引起肝损伤的动物类中药有
以下关于一般通用或小型设备的不合格设备的处理,说法正确的是( )。
国家对事业单位工作人员实行()。
太阳能:地热能:新能源
Recentlegalresearchindicatedthatincorrectidentificationisamajorfactorinmanymiscarriagesofjustice.Italsosuggest
最新回复
(
0
)