首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知α1,α2,α3是非齐次线性方程组3个不同的解,证明: (Ⅰ)α1,α2,α3中任何两个解向量均线性无关; (Ⅱ)如果α1,α2,α3线性相关,则α1-α2,α1-α3线性相关.
已知α1,α2,α3是非齐次线性方程组3个不同的解,证明: (Ⅰ)α1,α2,α3中任何两个解向量均线性无关; (Ⅱ)如果α1,α2,α3线性相关,则α1-α2,α1-α3线性相关.
admin
2018-06-12
133
问题
已知α
1
,α
2
,α
3
是非齐次线性方程组3个不同的解,证明:
(Ⅰ)α
1
,α
2
,α
3
中任何两个解向量均线性无关;
(Ⅱ)如果α
1
,α
2
,α
3
线性相关,则α
1
-α
2
,α
1
-α
3
线性相关.
选项
答案
(Ⅰ)如果α
1
,α
2
线性相关,不妨设α
2
=kα
1
,那么 Aα
2
=A(kα
1
)=kAα
1
=kb. 又Aα
2
=b,于是k=1,与α
1
,α
2
不同相矛盾. (Ⅱ)如果α
1
,α
2
,α
3
线性相关,则有不全为0的k
1
,k
2
,k
3
使k
1
α
1
+k
2
α
2
+k
3
α
3
=0,那么 (k
1
+k
2
+k
3
)α
1
=k
2
(α
1
-α
2
)+k
3
(α
1
-α
3
). 由于α
1
是非齐次方程组Aχ=b的解,而α
1
-α
2
,α
1
-α
3
是齐次方程组Aχ=0的解,α
1
不能由α
1
-α
2
,α
1
-α
3
线性表出,故必有k
1
+k
2
+k
3
=0,那么 k
2
(α
1
-α
2
)+k
3
(α
1
-α
3
)=0. 此时k
2
,k
3
不全为0(否则亦有k
1
=0,与k
1
,k
2
,k
3
不全为0相矛盾), 故α
1
-α
2
,α
1
-α
3
线性相关.
解析
转载请注明原文地址:https://kaotiyun.com/show/sUg4777K
0
考研数学一
相关试题推荐
设矩阵X满足方程,则矩阵X=_______.
设A为n阶可逆矩阵,α为n维列向量,b为常数,记分块矩阵P=其中A*是A的伴随矩阵,E为n阶单位矩阵.(1)计算并化简PQ;(2)证明矩阵Q可逆的充分必要条件是αTA-1α≠b.
设A为n阶非零矩阵,E为n阶单位矩阵.若A3=O,则()
已知n元齐次线性方程组A1χ=0的解全是A2χ=0的解,证明A2的行向量可以由A1的行向量线性表示.
求空间曲线积分J=∫Ly2dχ+χydy+χzdz其中L是圆柱面χ2+y2=2y与平面y=z-1的交线,从χ轴正向看去取逆时针方向.
已知线性方程组的通解为[2,1,0,1]T+k[1,-1,2,0]T.记α=[a1j,a2j,a3j,a4j]T,j=1,2,…,5.问:α4能否由α1,α2,α3线性表出,说明理由.
求使不等式对所有的自然数n都成立的最大的数α和最小的数β
设有一正椭圆柱体,其底面的长、短轴分别为2a,2b,用过此柱体底面的短轴且与底面成α角的平面截此柱体,得一楔形体(如图1.3-2),求此楔形体的体积V.
设有一半径为R长度为l的圆柱体,平放在深度为2R的水池中(圆柱体的侧面与水面相切).设圆柱体的比重为ρ(ρ>1),现将圆柱体从水中移出水面,问需做多少功?
确定常数a和b的值,使f(x)=x-(a+6ex2)sinx当x→0时是x的5阶无穷小量.
随机试题
下列利益集团中,属于政治性利益集团的是()
四逆汤证四肢厥逆的机制是
足月新生儿,出生体重3000g,身长50cm,母乳喂养。哺乳后竖抱起新生儿并拍其背是为了
施工单位不得将其承接的水利建设项目的()进行转包。
下列各项中,属于偷税行为的有()。
某百货公司销售空调机,在门口广告牌上写明:“凡在本处购买空调者,给付总价款3%的回扣,介绍推销者给付总价款1%的佣金。”被人发现后举报到有关部门,经调查发现该公司给付的回扣,账面上均有明确记载。该公司给付回扣的行为是()。
某局办公室共有10个文件柜按序号一字排开。其中1个文件柜只放上级文件,2个只放本局文件,3个只放各处室材料,4个只放基层单位材料。要求:1号和10号文件柜放各处室材料:两个放本局文件的文件柜连号:放基层单位材料的文件柜与放本局文件的文件柜不连号:
Let’ssayapatientwalksintomyofficeandsayshe’sbeenfeelingdownforthepastthreeweeks.Amonthago,hisfianceeleft
Aprettypotplantmightmakeanunemotionalworkspacefeelmorepersonal.Butnewresearchhasrevealedthatofficeplantsdo
A、HewillgoallthewaytoseeSteve.B、HeisnotsureifhecanfindaroomforSteve.C、Heisafraidtheweatherwillnotbe
最新回复
(
0
)