首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
试分析下列各个结论是函数z=f(x,y)在点P0(x0,y0)处可微的充分条件还是必要条件.
试分析下列各个结论是函数z=f(x,y)在点P0(x0,y0)处可微的充分条件还是必要条件.
admin
2018-04-15
30
问题
试分析下列各个结论是函数z=f(x,y)在点P
0
(x
0
,y
0
)处可微的充分条件还是必要条件.
选项
答案
结论(1)~(5)中每一个分别都是z=f(x,y)在点P
0
(x
0
,y
0
)处可微的必要条件,而非充分条件.结论(7)是z=f(x,y)在点P
0
(x
0
,y
0
)处可微的充分非必要条件;而结论(6)是其既非充分又非必要条件. 因z=f(x,y)在点P
0
(x
0
,y
0
)处可微,故z=f(x,y)在点P
0
(x
0
,y
0
)处连续,即[*]=f(x
0
,y
0
),则极限[*]f(x,y)必存在,于是z=f(x,y)在点P
0
(x
0
,y
0
)某邻域有界. 结论(3)表示一元函数F(x)=f(x,y
0
)在x
0
处连续,G(y)=f(x
0
,y)在y
0
处连续,它是二元函数z=f(x,y)在点P
0
(x
0
,y
0
)处连续的必要条件,而非充分条件.而z=f(x,y)在点P
0
(x
0
,y
0
)处连续又是其可微的必要条件,且非充分条件. 只要在z=f(x,y)在P
0
(x
0
,y
0
)的全微分定义△z=A△x+B△y+o(ρ),ρ=[*]中取特殊情况,分别令△y=0与位△x0即证得结论(4). 因为由函数z=f(x,y)在(x
0
,y
0
)处可微知,f’
x
(x
0
,y
0
)与f’
y
(x
0
,y
0
)都存在,故曲面f(x,y)=z=0在(x
0
,y
0
,f(x
0
,y
0
))处法向量n=f’
x
(x
0
,y
0
)i+f’
y
(x
0
,y
0
)j-k不是零向量.于是结论(5)成立. 结论(6)的[*][f’
x
(x,y
0
)-f’
x
(x
0
,y
0
)]=0表示偏导函数f’
x
(x,y)在y=y
0
时的一元函数f’
x
(x,y
0
)在x
0
处连续,它仅是二元偏导函数f’
x
(x
0
,y
0
)在P
0
(x
0
,y
0
)处连续的一个必要条件,对[*][f’
y
(x
0
,y)-f’
y
(x
0
,y
0
)]=0有类似的结果.而z=f(x,y)在P
0
(x
0
,y
0
)处可微又是f’
x
(x,y),f’
y
(x,y)在P
0
(x
0
,y
0
)处连续的另一个必要条件,所以结论(6)既不是充分条件又不是必要条件. 结论(7)的等价形式是△x=f(x,y)-f(x
0
,y
0
)=o(ρ),ρ=[*],它是相应全微分定义中A=0,B=0的情形,则结论(7)是其可微的充分非必要条件.
解析
转载请注明原文地址:https://kaotiyun.com/show/bYr4777K
0
考研数学一
相关试题推荐
设A是n×n矩阵,对任何n维列向量X都有AX=0,证明:A=0.
证明:若A为n阶可逆方阵,A*为A的伴随矩阵,则(A*)T=(AT)*.
设证明:当n≥3时,有An=An-2+A2一E;
设向量组α1,α2……αn(s≥2)线性无关,且β1=α1+α2,β2=α2+α3,…,βs-1=αs-1+αs,βs=αs+α1讨论向量组β1β2
已知A,B是三阶方阵,A≠0,AB=0,证明:B不可逆.
设f(x)的导数在x=a处连续,又=一1,则
设f(x)是连续函数,F(x)是f(x)的原函数,则
设总体X服从正态分布N(0,σ2),X1,X2,X3,…,Xn是取自总体X的简单随机样本,S2分别是该样本的均值和方差,若统计量F~F(1,n一1),则()
极限()
随机试题
法兰连接是化工管路最常用的连接方式。()
我国票据法规定的银行本票仅限于_______。
呈蛙状腹的大量腹水最常见于
A.期门B.神门C.章门D.梁门治疗脾病,宜选用的腧穴是
男,40岁。有乙型肝炎病毒感染史。近2个月来感肝区疼痛,食欲减退,昨晚出现低血糖症状,今来院就诊,查体发现肝大。该病人即行肝动脉栓塞化疗术。术后的饮食指导不包括
用药咨询包括
以下哪种休克的治疗最适用于使用阿托品
某简支箱形截面梁,跨度60m,梁宽1m,梁高3.6m,采用Q345钢(16Mn钢)制造,在垂直荷载作用下,梁的整体稳定系数φb为( )。
人力资本理论认为,人力资本是经济增长的关键,教育是形成人力资本的重要力量。这一理论的主要缺陷是()。
(2018年吉林)“个性化定制”就在我们身边,“互联网+”大背景下,我们可以张扬更多的个性,从一件T恤到一本书,只要你愿意,生活中就会充满惊喜。这种消费属于()。
最新回复
(
0
)