首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设二维随机变量(X,Y)在区域D={(x,y)|0<x<1,x2<y<}上服从均匀分布,令 (Ⅰ)写出(X,Y)的概率密度; (Ⅱ)问U与X是否相互独立?并说明理由; (Ⅲ)求Z=U+X的分布函数F(z)。
设二维随机变量(X,Y)在区域D={(x,y)|0<x<1,x2<y<}上服从均匀分布,令 (Ⅰ)写出(X,Y)的概率密度; (Ⅱ)问U与X是否相互独立?并说明理由; (Ⅲ)求Z=U+X的分布函数F(z)。
admin
2018-04-11
125
问题
设二维随机变量(X,Y)在区域D={(x,y)|0<x<1,x
2
<y<
}上服从均匀分布,令
(Ⅰ)写出(X,Y)的概率密度;
(Ⅱ)问U与X是否相互独立?并说明理由;
(Ⅲ)求Z=U+X的分布函数F(z)。
选项
答案
(Ⅰ)区域D的面积S=∫
0
1
[*],则(X,Y)的概率密度为 [*] (Ⅱ)P{U=0}=P{X>Y}=∫
0
1
dx[*] P{U=1}—1—P{U一0}=[*], [*] 因为P{U=0,X≤[*]}≠P{U=0}.P{x≤[*]},所以U与X不独立。 (Ⅲ)由全概率公式可得 F(z)=P{Z≤z}=P{X+U≤z} =P{X+U≤z,X≤Y}+P{X+U≤z,X>y} =P{X≤z—1,X≤Y}+P{X≤z,X>Y}。 当 0≤ z < 1时,F(z)= P{X≤ z,X> Y} =∫
0
x
dx[*]z
2
—z
3
; 当 1≤ z < 2时,F(z) = P{X≤ z—1,X≤ Y}+P{X≤z,X> Y} [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/ber4777K
0
考研数学一
相关试题推荐
如图,连续函数y=f(x)在区间[一3,一2],[2,3]上的图形分别是直径为1的上、下半圆周,在区间[一2,0],[0,2]上的图形分别是直径为2的下、上半圆周.设,则下列结论正确的是
设奇函数f(x)在[一1,1]上具有2阶导数,且f(1)=1.证明:存在ξ∈(0,1),使得f’(ξ)=1;
设函数y=f(x)具有二阶导数,且f’(x)>0,f"(x)>0,△x为自变量x在x0处的增量,△y与dy分别为f(x)在点x0处对应的增量与微分,若△x>0,则
测量某物体高度时,测量误差(单位:毫米)服从正态分布N(0,52),即X的概率密度为,-∞<x<+∞,求测量误差的绝对值|X|的数学期望与方差。
求微分方程y"-ay’=ebx(a,b为实常数,且a≠0,b≠0)的通解。
设总体X的概率密度函数如下,X1,X2,…,Xn为总体X的样本。判断上题中求出的估计量是否为λ的无偏估计量?
曲线有()渐近线。
求下列极限.
已知事件A、B仅发生一个的概率为0.3,且P(A)+P(B)=0.5,则A,B至少有一个不发生的概率为________.
已知fn(x)满足fn’(x)=fn(x)+xn-1ex(n为正整数)且求函数项级数的和。
随机试题
患者,男,28岁。8小时前因暴饮暴食后上腹部绞痛,向肩背部放射,怀疑为急性胰腺炎。此时最具诊断意义的实验室检查为
翼片的优点是能清晰显示
患者小便短数,灼热刺痛,尿色黄赤,舌苔黄腻,脉数。治疗应选用()
开发项目的产品开发是指房地产开发企业在开发过程中所发生的各项费用。在核算上将其费用划分为土地费用、前期工程费和()。
我国唐朝“六学二馆”等级森严的入学条件,充分说明政治经济制度决定()
A.ρ因子B.σ因子C.TFⅡDD.AATAAA原核生物识别转录起始点的是
在SQLServer2000中,设u1是某数据库中的用户,若要使u1在该数据库中只具有查询全部用户表的权限。请补全如下语句: EXECsp_addrolemember“(11)”,“(12)”(11)
Scientistscandeterminesomeone’sfavoritefoodfromtheirbodyshape.Theyhavediscoveredthatthearrangementoftastebuds
A、Itisnotfashionableanymore.B、Itisoldandnotworkingnormally.C、Itsnoisemakesthemunhappy.D、Itcan’tbeusedanym
Thesedays,peoplewhodo【C1】______workoftenreceivefarmoremoneythanpeoplewhoworkinoffices.Peoplewhoworkinoffices
最新回复
(
0
)