设二维随机变量(X,Y)在区域D={(x,y)|0<x<1,x2<y<}上服从均匀分布,令 (Ⅰ)写出(X,Y)的概率密度; (Ⅱ)问U与X是否相互独立?并说明理由; (Ⅲ)求Z=U+X的分布函数F(z)。

admin2018-04-11  58

问题 设二维随机变量(X,Y)在区域D={(x,y)|0<x<1,x2<y<}上服从均匀分布,令

(Ⅰ)写出(X,Y)的概率密度;
(Ⅱ)问U与X是否相互独立?并说明理由;
(Ⅲ)求Z=U+X的分布函数F(z)。

选项

答案(Ⅰ)区域D的面积S=∫01[*],则(X,Y)的概率密度为 [*] (Ⅱ)P{U=0}=P{X>Y}=∫01dx[*] P{U=1}—1—P{U一0}=[*], [*] 因为P{U=0,X≤[*]}≠P{U=0}.P{x≤[*]},所以U与X不独立。 (Ⅲ)由全概率公式可得 F(z)=P{Z≤z}=P{X+U≤z} =P{X+U≤z,X≤Y}+P{X+U≤z,X>y} =P{X≤z—1,X≤Y}+P{X≤z,X>Y}。 当 0≤ z < 1时,F(z)= P{X≤ z,X> Y} =∫0xdx[*]z2—z3; 当 1≤ z < 2时,F(z) = P{X≤ z—1,X≤ Y}+P{X≤z,X> Y} [*]

解析
转载请注明原文地址:https://kaotiyun.com/show/ber4777K
0

最新回复(0)