首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是n×m阶矩阵,B是m×n矩阵,E是n阶单位阵,若AB=E.证明:B的列向量组线性无关.
设A是n×m阶矩阵,B是m×n矩阵,E是n阶单位阵,若AB=E.证明:B的列向量组线性无关.
admin
2020-03-05
27
问题
设A是n×m阶矩阵,B是m×n矩阵,E是n阶单位阵,若AB=E.证明:B的列向量组线性无关.
选项
答案
方法一 证B的列向量线性无关,即证B列满秩,即证r(B)=n 因r(B)≤n(n≤m),又r(B)≥r(AB)=r(E)=n.故r(B)=n,所以B的列向量组线性无关. 方法二 设B=[β
1
,β
2
,…,β
n
],其中β
i
(i=1,2,…,n)是B按列分块后的列向量. 设x
1
β
1
+x
2
β
2
+…+x
n
β
n
=0,即 [*] 两边左乘A,则得 ABX=EX=X=0, 所以β
1
,β
2
,…,β
n
线性无关.
解析
转载请注明原文地址:https://kaotiyun.com/show/bfS4777K
0
考研数学一
相关试题推荐
设向量组α1,α2,α3线性无关,且α1+aα2+4α3,2α1+α2一α3,α2+α3线性相关,则a=_______.
若方程χ3-6χ2-15χ+a=0恰有三个实根,则a的取值范围是_______.
Ω是由x2+y2=z2与z=a(a>0)所围成的区域,则三重积分(x2+y2)dv在柱面坐标系下累次积分的形式为()
设两个相互独立的随机变量X和Y分别服从正态分布N(0,1)和N(1,1),则()
齐次线性方程组的系数矩阵为A,存在B≠O,使得AB=O,则()
级数的和为_________。
设曲线L:x2+y2+x+y=0,取逆时针方向,证明:I=∫L-ysinx2dx+xcosy2dy<
求函数f(x)=∫0x2(2-t)e-tdt的最大值与最小值.
一生产线生产的产品成箱包装,每箱的质量是随机的,假设每箱平均重50千克,标准差为5。若用最大载重为5吨的汽车承运,利用中心极限定理说明每辆车最多可以装()箱,才能保证不超载的概率大于0.977(Φ(2)=0.977,其中Φ(x)是标准正态分布函数)
设f(x)=ax3-6ax2+b在闭区间[-1,2]上的最大值是3,最小值是-29,且a>0,则a______,b=________.
随机试题
根据以下情境材料,回答下列问题。大学生小李第一次去某大城市旅游,正值旅游旺季,各酒店客房爆满。小李好不容易订上某酒店的一个标准间。夜晚时分,小李到达酒店,从大楼东侧电梯上18楼,顺楼道径直抵达1810客房入住,楼道两侧客房有14间。夜深时分,楼道间
2008年6月30日,胡锦涛总书记在抗震救灾先进基层党组织和优秀共产党员代表座谈会上概括的伟大抗震救灾精神是
小儿出现高热,面部青紫,尤以鼻柱、两眉间及口唇四周为甚,往往属于
A.CK-MBB.GGTC.LDHD.ALTE.HBDH病毒性肝炎明显升高的酶是
运用各种最新技术实现企业的信息流、物流及资金流的集成和优化运行,使企业赢得竞争的一种生产模式即是()。
下列各项中,违反民法自愿原则的有()。
中国共产党独立领导革命战争和创建人民军队始于()。
东南亚国家和地区高等学校招生主要实行()。
(2016·江西)德育原则是德育工作中必须遵守的基本要求。以下表述能反映因材施教原则的是()
A、Itwillreducegovernmentrevenues.B、Itwillstimulatebusinessactivities.C、Itwillmainlybenefitthewealthy.D、Itwillc
最新回复
(
0
)