首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2001年] 一生产线生产的产品成箱包装,每箱的重量是随机的.假设每箱平均重50 kg,标准差为5 kg,若用最大载重量为5 t的汽车承运,试利用中心极限定理说明每辆车最多可装多少箱,才能保证不超载的概率大于0.977.(ф(2)=0.977,其中ф(
[2001年] 一生产线生产的产品成箱包装,每箱的重量是随机的.假设每箱平均重50 kg,标准差为5 kg,若用最大载重量为5 t的汽车承运,试利用中心极限定理说明每辆车最多可装多少箱,才能保证不超载的概率大于0.977.(ф(2)=0.977,其中ф(
admin
2019-04-08
55
问题
[2001年] 一生产线生产的产品成箱包装,每箱的重量是随机的.假设每箱平均重50 kg,标准差为5 kg,若用最大载重量为5 t的汽车承运,试利用中心极限定理说明每辆车最多可装多少箱,才能保证不超载的概率大于0.977.(ф(2)=0.977,其中ф(x)是标准正态分布函数.)
选项
答案
设X
i
(i=1,2,…,n)是装运的第i箱的重量(单位:kg),所求箱数为n.由题设知X
1
,X
2
,…,X
n
为独立同分布的随机变量,而n箱的重量为S
n
=X
1
+X
2
+…+X
n
,是n个独立同分布的随机变量之和.由题设知E(X
1
)=50,[*], 于是 D(X
i
)=25=σ
2
.又 E(S
n
)=50n,[*]即 D(S
n
)=25n. 根据列维一林德伯格中心极限定理,S
n
近似服从正态分布,且有S
n
[*] N(50n,25n).于是 [*] 因而 [*].令[*],代入不等式中得到10x
2
+2x一1000≤0,化为 [*] 因x≥0,故[*],于是 [*] 取整数,即知每辆车最多可装98箱.
解析
转载请注明原文地址:https://kaotiyun.com/show/Ix04777K
0
考研数学一
相关试题推荐
设某班车起点站上客人数X服从参数λ(λ>0)的泊松分布,每位乘客在中途下车的概率为p(0<p<1),且途中下车与否相互独立,以Y表示在中途下车的人数,求:(Ⅰ)在发车时有n个乘客的条件下,中途有m人下车的概率;(Ⅱ)二维随机变量(X,Y)的概率分布。
设A=(α1,α2,α3,α4,α5),其中α1,α3,α5线性无关,且α2=3α1一α3一α5,α4=2α1+α3+6α5,求方程组AX=0的通解.
设向量组a1,a2线性无关,向量组a1+b,a2+b线性相关,证明:向量b能由向量组a1,a2线性表示。
设f(x)连续,证明:∫0x[∫0tf(u)du]dt=∫0xf(t)(x—t)dt.
求数列极限:(I)(M>0为常数);(Ⅱ)设数列{xn}有界,求
甲、乙两船驶向不能同时停靠两条船的码头,它们一天到达时间是等可能的,如果甲停靠,则停靠的时间为1小时,若乙停靠,则停靠的时间为2小时,求它们不需要等候的概率.
设有摆线试求L绕x轴旋转一周所得旋转面的面积.
将3个球随机地放入4个盒子中,求盒子中球的最多个数分别为1,2,3的概率.
(2015年)若函数z=z(x,y)由方程ez+xyz+x+cosx=2确定,则dz|(0,1)=_____________.
[2001年]设某班车起点站上车人数X服从参数为λ(λ>0)的泊松分布,每位乘客在中途下车的概率为p(0<p<1),且中途下车与否相互独立,以Y表示在中途下车的人数,求:二维随机变量(X,Y)的概率分布.
随机试题
A.红皮病B.紫癜风C.猫眼疮D.红斑狼疮E.浸淫疮
描述错误的是
下列关于下肢深静脉血栓形成的叙述,不正确的是()
毛果芸香碱(匹鲁卡品)对眼的作用表现为
溢水坝模型实验,实际流量为Q1=537m3/s。若在模型上测得的流量Qm=300L/s,则该模型长度比尺为()。
项目目标动态控制的纠偏措施不包括( )。
利率与收益率
B
Hewasaccused______stealingfromtheshop.
A、Itcouldhelppeopleofallagestoavoidcancer.B、Itwasmainlymeantforcancerpatients.C、Itmightappealmoretoviewers
最新回复
(
0
)