首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
给出如下5个命题: (1)若不恒为常数的函数f(x)在(一∞,+∞)内有定义,且x0≠0是f(x)的极大值点,则一x0必是一f(一x)的极大值点; (2)设函数f(x)在[a,+∞)上连续,f’’(x)在(a,+∞)内存在且大于零,则F(x)=在(a,+∞
给出如下5个命题: (1)若不恒为常数的函数f(x)在(一∞,+∞)内有定义,且x0≠0是f(x)的极大值点,则一x0必是一f(一x)的极大值点; (2)设函数f(x)在[a,+∞)上连续,f’’(x)在(a,+∞)内存在且大于零,则F(x)=在(a,+∞
admin
2019-02-23
55
问题
给出如下5个命题:
(1)若不恒为常数的函数f(x)在(一∞,+∞)内有定义,且x
0
≠0是f(x)的极大值点,则一x
0
必是一f(一x)的极大值点;
(2)设函数f(x)在[a,+∞)上连续,f’’(x)在(a,+∞)内存在且大于零,则F(x)=
在(a,+∞)内单调增加;
(3)若函数f(x)对一切x都满足xf’’(x)+3x[f’(x)]
2
=1一e
-x
,且f’(x
0
)=0,x
0
≠0,则f(x
0
)是f(x)的极大值;
(4)设函数y=y(x)由方程2y
3
一2y
2
+2xy—x
2
=1所确定,则y=y(x)的驻点必定是它的极小值点;
(5)设函数f(x)=xe
x
,则它的n阶导数f
(n)
(x)在点x
0
=一(n+1)处取得极小值.正确命题的个数为 ( )
选项
A、2
B、3
C、4
D、5
答案
B
解析
对上述5个命题一一论证.对于(1),只要注意到:若f(x)在点x
0
取到极大值,则一f(x)必在点x
0
处取到极小值,故该结论错误;对于(2),对任意x>a,由拉格朗日中值定理知,存在ξ∈(a,x)使f(x)-f(a)=G878=f’(ξ)(x-a),则
由f’’(x)>0知,f’(x)在(a,+∞)内单调增加,因此,对任意的x与ξ,a<ξ<x,有f’(x)>f’(ξ),从而由上式得F’(x)>0,所以函数F(x)在(a,+∞)内单调增加,该结论正确;对于(3),因f’(x
0
)=0,故所给定的方程为
,显然,不论x
0
>0,还是x
0
<0,都有f’’(x
0
)>0,于是由f’(x
0
)=0与f’’(x
0
)>0得f(x
0
)是f(x)的极小值,故该结论错误;对于(4),对给定的方程两边求导,得3y
2
y’一2yy’+xy’+xy’—x=0, ①
再求导,得(3y
2
一2y+z)y’’+(6y一2)(y’)
2
+2y’=1. ②
令y’=0,则由式①得y=x,再将此代入原方程有2x
3
一x
2
=1,从而得y—y(x)的唯一驻点x
0
=1,因x
0
=1时y
0
=1,把它们代入式②得y’’|
(1,1)
>0,所以唯一驻点x
0
=1是y=y(x)的极小值点,该结论正确;对于(5),因为是求n阶导数f
(n)
(x)的极值问题,故考虑函数f(x)=xe
x
的n+1阶导数f
(n+1)
(x),由高阶导数的莱布尼茨公式得f
(n)
(x)=x(e
x
)
(n)
+x(e
x
)
(n-1)
=(x+n)e
x
,f
(n+1)
(x)=[x+(n+1)]e
x
;f
(n+2)
(x)=[x+(n+2)]e
x
.令f
(n+1)
(x)=0,得f
(n)
(x)的唯一驻点x
0
=一( n+1);又因f
(n+2 )
(x
0
)=e
-(n+1)
>0,故点x
0
=一(n+1)是n阶导数f
(n)
(x)的极小值点,且其极小值为f
(n)
(x)=一e
-(n+1)
,该结论正确.故正确命题一共3个,答案选择B.
转载请注明原文地址:https://kaotiyun.com/show/qB04777K
0
考研数学一
相关试题推荐
设二维随机变量(X,Y)的联合密度函数为f(x,y)=.求随机变量Z=X+2Y的分布函数和密度函数.
设A=E一ααT,其中α为n维非零列向量.证明:(1)A2=A的充分必要条件是α为单位向量;(2)当α是单位向量时A为不可逆矩阵.
计算(x2+y2+z2)dS,其中S为锥面z2=x2+y2介于z=0及z=1之间的部分.
设X1,X2,…,Xn是取自均匀分布在[0,θ]上的一个样本,试证:Tn=max{X1,X2,…,Xn}是θ的相合估计.
设f(x)=,求f(x)的间断点并指出其类型.
若函数f(c)在[0,1]上连续,在(0,1)内具有二阶导数,f(0)=f(1)=0,f’’(x)<0,且f(x)在[0,1]上的最大值为M.求证:(Ⅰ)f(x)>0(x∈(0,1));(Ⅱ)自然数n,存在唯一的xn∈(0,1),使得.
设事件A,C独立,B,C也独立,且A,B不相容,则().
设两个相互独立的随机变量X和Y分别服从正态分布N(0,1)和N(1,1),则()
已知线性方程组的一个基础解系为(b11,b21,…,b1,2n)T,(b21,b22,…,b2,2n)T,…,(bn1,bn2,…,bn,2n)T,试写出线性方程组的通解,并说明理由。
设{an},{bn},{cn}均为非负数列,且则必有()
随机试题
X线是德国物理学家威·康·伦琴教授于什么时间发现的
可以结合企业特点,形成具有本企业特色的产品系列,使产品在市场上占据有利地位的新产品开发方式是()。
自由时差指的是在不影响其()的前提下,本工作可以利用的机动时间。
基站天馈线系统需做防雷处理的位置有()。
如果美元相对于英镑升值,在其他因素不变的情况下,我们能预期
乙股份有限公司(以下简称“乙公司”)为华东地区的一家上市公司,属于增值税一般纳税人。乙公司2014年至2017年与固定资产有关的业务资料如下:(1)2014年12月1日,乙公司购入一条需要安装的生产线,取得的增值税专用发票上注明的生产线售价为1170万元
教育改革发展的战略主题是()。
在刑法的溯及问题上,目前我国采用的是从旧兼从轻原则。()
通常情况居民一周可以分为常规工作日(周一到周五)和常规休息日(周六、周日)。与此相似,居民一天的时间可以划分为工作时间、个人生活必需时间、家务劳动时间和可以自由支配时间等四部分。2008年,下列项目中交通活动时问最长的是()。
“要保持香港五十年繁荣和稳定,五十年以后也繁荣和稳定,就要保持中国共产党领导下的社会主义制度。我们的社会主义制度是有中国特色的社会主义制度,这个特色,很重要的一个内容就是对香港、澳门、台湾问题的处理,就是‘一国两制’。”这段论述表明,“一国两制”基本方针的
最新回复
(
0
)