首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设向量α1=(1,0,2,3),α2=(1,1,3,5),α3=(1,-1,a+2,1),α4=(1,2,4,a+8),β=(1,1,b+3,5).问:a,b为何值时,β不能用α1,α2,α3,α4线性表示;a,b为何值时,β能用α1,α2,α3,α4线性
设向量α1=(1,0,2,3),α2=(1,1,3,5),α3=(1,-1,a+2,1),α4=(1,2,4,a+8),β=(1,1,b+3,5).问:a,b为何值时,β不能用α1,α2,α3,α4线性表示;a,b为何值时,β能用α1,α2,α3,α4线性
admin
2019-06-28
65
问题
设向量α
1
=(1,0,2,3),α
2
=(1,1,3,5),α
3
=(1,-1,a+2,1),α
4
=(1,2,4,a+8),β=(1,1,b+3,5).问:a,b为何值时,β不能用α
1
,α
2
,α
3
,α
4
线性表示;a,b为何值时,β能用α
1
,α
2
,α
3
,α
4
线性表示,并写出该表达式.
选项
答案
当a=-1,b≠0时,β不能用α
1
,α
2
,α
3
,α
4
线性表示; 当a≠-1时,有唯一的线性表示: β=[*] 当=-1,b=0时,有 β=(-2c
1
+c
2
)α
1
+(1+c
1
-2c
2
)α
2
+c
1
α
3
+c
2
α
4
(c
1
,c
2
为任意常数).
解析
转载请注明原文地址:https://kaotiyun.com/show/bpV4777K
0
考研数学二
相关试题推荐
设A=,ξ1=。对(Ⅰ)中任意向量ξ2和ξ3,证明ξ1,ξ2,ξ3线性无关。
设三阶实对称矩阵A的特征值为λ1=一1,λ2=λ3=1,对应于λ1的特征向量为ξ1=(0,1,1)T,求A。
设矩阵A=。当k为何值时,存在可逆矩阵P,使得P-1AP为对角矩阵?并求出P和相应的对角矩阵。
设。已知线性方程组Ax=b存在两个不同的解。求λ,a;
齐次方程组有非零解,则λ=________。
η*是非齐次线性方程组Ax=b的一个解,ξ1,…,ξn-r是对应的齐次线性方程组的一个基础解系。证明:η*,η*+ξ1,…,+η*+ξn-r线性无关。
设向量α1,α2,…,αn-1是n一1个线性无关的n维列向量,ξ1,ξ2是与α1,α2,…,αn-1均正交的n维非零列向量。证明:ξ1,ξ2线性相关;
设A,B为同阶方阵。当A,B均为实对称矩阵时,证明(I)的逆命题成立。
设A,B为同阶方阵。若A,B相似,证明A,B的特征多项式相等;
随机试题
证券公司申请融资融券业务资格的,需经营证券经纪业务已满()年。
Shynessisthecauseofmuchunhappinessformanypeople.Shypeopleare【C1】______andself-conscious,thatis,theyareexcessiv
男性,22岁,进食后突发上腹痛,撕裂样,迅速波及全腹,3小时后于急诊求治,既往有溃疡病史,腹肌紧张,全腹压痛,肠鸣音弱,wBCl0.1×109/L。如为空腹发病,最适宜的处置方式是
经某市人民政府批准,市节水办受市公用事业管理局的委托对某企业进行了处罚。这里的行政主体是()。
地方各级人民政府应急管理部门应当每年对应急预案的监督管理工作进行总结,并报()。
下列选项中,()是属于项目的合法性调查。
根据消费税法律制度的规定,下列各项中,不缴纳消费税的是()。
按照近代政治学理论观点,共和含义比较广泛,涵盖着民主概念。具体来说,共和国相对于君主国而言,凡是非君主制国家便是共和国,共和国在历史上分成贵族共和国和民主共和国。应当说,这种政治理论观点可能适用于近代国家情况,但不合乎古代政治观念。共和国概念源于古罗马,在
1,4,13,40,121,()
A、 B、 C、 D、 D前一组图中除大圆弧以外,“”、“”、“”轮换出现,后一组图中这些元素也应轮换出现,故本题正确答案为D。
最新回复
(
0
)