首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设四元齐次线性方程组(I)为又已知某齐次线性方程组(Ⅱ)的通解为k1[0,1,1,0]T+k2[一1,2,2,1]T. 问线性方程组(I)和(Ⅱ)是否有非零公共解?若有,则求出所有的公共非零解;若没有,则说明理由.
设四元齐次线性方程组(I)为又已知某齐次线性方程组(Ⅱ)的通解为k1[0,1,1,0]T+k2[一1,2,2,1]T. 问线性方程组(I)和(Ⅱ)是否有非零公共解?若有,则求出所有的公共非零解;若没有,则说明理由.
admin
2019-07-23
60
问题
设四元齐次线性方程组(I)为
又已知某齐次线性方程组(Ⅱ)的通解为k
1
[0,1,1,0]
T
+k
2
[一1,2,2,1]
T
.
问线性方程组(I)和(Ⅱ)是否有非零公共解?若有,则求出所有的公共非零解;若没有,则说明理由.
选项
答案
将方程组(Ⅱ)的通解代入方程组(I),得到[*]解之得k
1
=一k
2
.当k
1
=一k
2
≠0时,则方程组(Ⅱ)的解为 k
1
[0,1,1,0]
T
+k
2
[一1,2,2,1]
T
=k
2
[0,一1,一1,0]
T
+k
2
[一1,2,2,1]
T
=k
2
[一1,1,1,1]
T
, 满足方程组(I),故方程组(I)和方程组(Ⅱ)有非零公共解,所有的非零公共解即方程组(Ⅱ)的解集合中满足方程组(I)的解向量为 k[一1,1,1,1]
T
(k是不为零的任意常数).
解析
转载请注明原文地址:https://kaotiyun.com/show/bwc4777K
0
考研数学一
相关试题推荐
设α1,α2,α3线性无关,则()线性无关:
已知n阶矩阵求|A|中元素的代数余子式之和,第i行元素的代数余子式之和,i=1,2,…,n及主对角元的代数余子式之和
试求z=f(x,y)=x3+y3一3xy在矩形闭域D={(x,y)|0≤x≤2,一1≤y≤2}上的最大值、最小值.
已知A是N阶实对称矩阵,λ1,λ2,…,λn是A的特征值,ξ1,ξ2,…,ξn是A对应的n个标准正交特征向量,证明:A可表示为A=λ1ξ1ξ1T+λ2ξ2ξ2T+…+λnξnξnT.
设有直线则L1与L2的夹角为()
原点(0,0,0)关于平面6x+2y一9z+121=0对称的点为
一自动生产包装机包装食盐,每袋重量服从正态分布N(μ,σ2),任取9袋测得其平均重量为,样本方差为s2=1.1432,求μ的置信度为0.95的置信区间.
设函数f(x,y)在点(0,0)附近有定义,且f’x(0,0)=3,f’y(0,0)=1,则()
对某一目标进行多次同等规模的轰炸,每次轰炸命中目标的炸弹数目是个随机变量,假设其期望值为2,标准差是1.3,计算在100次轰炸中有180颗到220颗炸弹命中目标的概率.
求曲线r=3cosθ,r=1+cosθ所围成的图形含于曲线r=3cosθ内部的公共部分的面积。
随机试题
所谓二次硬化是指铁碳合金在一次或多次()后硬度提高的现象。
癫痫发作特点不包括
A.赭石B.石决明C.罗布麻D.羚羊角E.天麻善治热极生风的中药是
可以活化补体旁路途径的物质是
藏医常用的治疗方法有()
丙承租了甲、乙共有的房屋,因未付租金被甲、乙起诉。一审法院判决丙支付甲、乙租金及利息共计10,000元,分五个月履行,每月给付2,000元。甲、乙和丙均不服该判决,提出上诉:乙请求改判丙一次性支付所欠的租金10,000元。甲请求法院判决解除与丙之间租赁关系
基金净值公告主要包括()。
(四川2010—14)已知数列{an}满足,则a2×a3=()。
magneticresonanceimaging(MM)
说明:假定你是ABC公司人力资源的秘书,根据以下要求写一份招聘启事,包括以下内容:1.英语专业毕业;2.优先考虑有相关工作经验的求职者;3.熟悉办公室工作,熟练运用计算机应用软件;4.有意者请发简历至邮箱:abc@163.com。
最新回复
(
0
)