首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A,B,C,D都是n阶矩阵,r(CA+DB)=n. (1)证明=n; (2)设ξ1,ξ2,…,ξr与η1,η2,…,ηs分别为方程组AX=0与BX=0的基础解系,证明:ξ1,ξ2,…,ξr,η1,η2,…,ηs线性无关.
设A,B,C,D都是n阶矩阵,r(CA+DB)=n. (1)证明=n; (2)设ξ1,ξ2,…,ξr与η1,η2,…,ηs分别为方程组AX=0与BX=0的基础解系,证明:ξ1,ξ2,…,ξr,η1,η2,…,ηs线性无关.
admin
2018-11-22
42
问题
设A,B,C,D都是n阶矩阵,r(CA+DB)=n.
(1)证明
=n;
(2)设ξ
1
,ξ
2
,…,ξ
r
与η
1
,η
2
,…,η
s
分别为方程组AX=0与BX=0的基础解系,证明:ξ
1
,ξ
2
,…,ξ
r
,η
1
,η
2
,…,η
s
线性无关.
选项
答案
(1)因为n=r(CA+DB)=[*]=n; (2)因为[*]=0只有零解,从而方程组AX=0与BX=0没有非零的公共解,故ξ
1
,ξ
2
,…,ξ
r
与η
1
,η
2
,…,η
s
线性无关.
解析
转载请注明原文地址:https://kaotiyun.com/show/2EM4777K
0
考研数学一
相关试题推荐
已知m个向量α1,…,αm线性相关,但其中任意m-1个向量都线性无关,证明:(Ⅰ)如果等式k1α1+…+kmαm=0成立,则系数k1,…,km或者全为零,或者全不为零;(Ⅱ)如果等式k1α1+…+kmαm=0和等式l1α1+…+lmαm=0都成立,则其
已知方程组(1)与方程(2)x1+5x3=0,则(1)与(2)的公共解是__________。
已知A=,且A的行和相等。A能否相似对角化,若能,请求出正交矩阵Q使得QTAQ为对角矩阵,若不能,请说明理由。
已知A=,且A的行和相等。求a,b的值;
计算二重积分xarctanydxdy,其中积分区域D是由抛物线y=x2和圆x2+y2=2及x轴在第一象限所围成的平面区域。
设A是5×4矩阵,A=(α1,α2,α3,α4),若η1=(1,1,-2,1)T,η2=(0,1,0,1)T是Ax=0的基础解系,则A的列向量的极大线性无关组是()
设∑为由直线绕x轴旋转产生的曲面,则∑上点P=(一1,1,一2)处的法线方程为().
设f(x)在(一∞,+∞)上二阶导数连续,f(0)=0(1)确定a,使g(x)在(一∞,+∞)上连续.(2)证明对以上确定的a,g(x)在(一∞,+∞)上有连续一阶导数.
求导4.
飞机以匀速v沿y轴正向飞行,当飞行到原点时被发现,随即从x轴上点(x0,0)处发射导弹向飞机击去,其中x0>0.若导弹的速度方向始终指向飞机,其速度大小为常数2v.求导弹的运行轨迹方程及导弹自发射到击中目标所需的时间T.
随机试题
在DreamweaverCS5中,关于图片超链接,下列说法不正确的是_______。
可引起感染性休克的是()
张某向李某借款10万元,2017年10月5日,李某提出要求偿还借款,张某拒绝向李某支付已到期借款。2018年4月,李某出差遭遇车祸后,住院20天,此期间未要求张某支付借款。根据《民法总则》的规定,李某请求人民法院保护其向张某返还借款的权利的诉讼时效期间为(
A公司是一家商业企业,主要从事商品批发业务,该公司2012年实际和2013年预计的主要财务数据如下:其他资料如下:(1)A公司的全部资产均为经营性资产,流动负债均为经营性负债,长期负债均为金融性负债,财务费用全部为利息费用。估计债务价值时采用账面价值
2019年2月18日,中共中央、国务院印发了《粤港澳大湾区发展规划纲要》。下列关于其城市定位的说法正确的是()。
【2014年新疆自治区第58题】某牧民饲养公羊和母羊共140只,一次共剪羊毛160斤。若每只公羊平均剪毛1斤2两,每只母羊平均剪毛8两,问公羊比母羊多多少只?
人们在抱怨邮局准备增加5分钱邮资的同时指责邮政部门不称职和缺乏效率,但这只看到了问题的一个方面,很少有比读到一位朋友的私人来信更让人喜悦的体验了。从这个角度来看,邮资是如此之低,增加5分钱根本不值一提。以下哪项最能指出上述论证在逻辑上的漏洞?
WhichuniversitydidhistorianPatriceHigonnetgraduatefrom?
Whatisthepurposeofthespeech?
Manypeoplebelievetheglarefromsnowcausessnowblindness.Yet,darkglassesornottheyfindthemselvessufferingfromhead
最新回复
(
0
)