首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(2008年试题,20)(I)证明积分中值定理:设f(x)在[a,b]上连续,则存在ζ∈[a,b],使(Ⅱ)若φ(x)有二阶导数,且满足φ(2)>φ(1)证明至少存在一点ζ∈(1,3),使得φ’’(η)
(2008年试题,20)(I)证明积分中值定理:设f(x)在[a,b]上连续,则存在ζ∈[a,b],使(Ⅱ)若φ(x)有二阶导数,且满足φ(2)>φ(1)证明至少存在一点ζ∈(1,3),使得φ’’(η)
admin
2013-12-18
67
问题
(2008年试题,20)(I)证明积分中值定理:设f(x)在[a,b]上连续,则存在ζ∈[a,b],使
(Ⅱ)若φ(x)有二阶导数,且满足φ(2)>φ(1)
证明至少存在一点ζ∈(1,3),使得φ
’’
(η)<0.
选项
答案
(I)设M和m分别是连续函数f(x)在区间[a,b](b>a)上的最大值和最小值,则有[*]不等式两边同除以(b一a),得到[*]显然[*]是介于函数f(x)的最大值和最小值之间的,根据闭区间上连续函数的介值定理可知,在区间[a,b]上至少存在一点ξ,使得函f(x)在该点处的函数值和[*]相等,即[*](a≤ξ≤b),等式两边同乘(b一a)可得[*](Ⅱ)由积分中值定理可得,至少存在一点η∈(2,3),使得[*]所以有φ(2)>φ(1),φ(2)>φ(η)因为φ(x)有二阶导数,所以由拉格朗日微分中值定理可知,至少存在一点ξ
1
∈(1,2),使得[*]且至少存在一点ξ
2
∈(2,η),使得φ
’
(ξ
2
)[*]再由拉格朗日微分中值定理可知,至少存在一点ξ∈(ξ
1
,ξ
2
),使得[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/R234777K
0
考研数学二
相关试题推荐
设函数f(x)在区间[0,2]上具有连续导数,f(0)=f(2)=0,M=,证明:若对任意的x∈(0,2),|f′(x)|≤M,则M=0.
设(I)求|A|.(Ⅱ)已知线性方程组Ax=β有无穷多解,求实数。的值,并求Ax=β的通解.
(13年)设二次型f(χ1,χ2,χ3)=2(a1χ2+aχ2χ2+a3χ3)2+(b1χ1+b2χ2+b3χ3)2,记(Ⅰ)证明二次型f对应的矩阵为2ααT+ββT.(Ⅱ)若α,β正交且均为单位向量,证明f在正交变换下的标准形为2y
[2006年]设三阶实对称矩阵A的各行元素之和都为3,向量α1=[-1,2,-1]T,α2=[0,-1,1]T都是齐次线性方程组AX=0的解.求正交矩阵Q和对角矩阵Λ,使得QTAQ=Λ;
(1998年)设函数f(x)在[a,b]上连续,在(a,b)内可导,且f’(x)≠0.试证存在ξ,η∈(a,b),使得
设A,B为3阶矩阵,且∣A∣=3,∣B∣=2,∣A_-1+B∣=2,则∣A+B-1∣=_______.
(2007年)将函数展开成x一1的幂级数,并指出其收敛区间。
[2008年]设n元线性方程组AX=b,其中当a为何值时,该方程组有无穷多解,并求通解.
(2000年)设其中f,g均可微,则=_____。
(2009年)设X1,X2,…,Xn为来自二项分布总体B(n,p)的简单随机样本,和S2分别为样本均值和样本方差,记统计量T=-S2,则E(T)=______。
随机试题
TheFirstSettlementinNorthAmericaItisverydifficulttosayjustwhencolonization(殖民)began.Thefirsthundredyears
关于架空电力线路保护区的表述,错误的是()。
主要功能项目的抽查检测多数属于()性质的。
下列关于被审计单位管理层对控制监督的表述中,正确的是()。
当经济出现停滞同时又存在通货膨胀即滞胀时,国家应采取的政策组合为()。
诺笃尔普认为:“在事实上个人是不存在的,因为人之所以为人,只是因为他生活在人群之中,并且参加社会生活。"这种教育目的观的价值取向是()
1838年提出细胞学说的生物学家是()。
甲国居民有来源于乙国所得200万元,甲、乙两国的所得税税率分别为25%、30%,两国均行使地域管辖权和居民管辖权。在限额抵免法下甲国应对该笔所得征收所得税()。
在一个无向图中,所有顶点的度数之和等于所有边数的( )倍。
PeoplelivingonpartsofthesouthcoastofEnglandfaceaseriousproblem.In1993,theownersofalargehotelandofseveral
最新回复
(
0
)