首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(2008年试题,20)(I)证明积分中值定理:设f(x)在[a,b]上连续,则存在ζ∈[a,b],使(Ⅱ)若φ(x)有二阶导数,且满足φ(2)>φ(1)证明至少存在一点ζ∈(1,3),使得φ’’(η)
(2008年试题,20)(I)证明积分中值定理:设f(x)在[a,b]上连续,则存在ζ∈[a,b],使(Ⅱ)若φ(x)有二阶导数,且满足φ(2)>φ(1)证明至少存在一点ζ∈(1,3),使得φ’’(η)
admin
2013-12-18
74
问题
(2008年试题,20)(I)证明积分中值定理:设f(x)在[a,b]上连续,则存在ζ∈[a,b],使
(Ⅱ)若φ(x)有二阶导数,且满足φ(2)>φ(1)
证明至少存在一点ζ∈(1,3),使得φ
’’
(η)<0.
选项
答案
(I)设M和m分别是连续函数f(x)在区间[a,b](b>a)上的最大值和最小值,则有[*]不等式两边同除以(b一a),得到[*]显然[*]是介于函数f(x)的最大值和最小值之间的,根据闭区间上连续函数的介值定理可知,在区间[a,b]上至少存在一点ξ,使得函f(x)在该点处的函数值和[*]相等,即[*](a≤ξ≤b),等式两边同乘(b一a)可得[*](Ⅱ)由积分中值定理可得,至少存在一点η∈(2,3),使得[*]所以有φ(2)>φ(1),φ(2)>φ(η)因为φ(x)有二阶导数,所以由拉格朗日微分中值定理可知,至少存在一点ξ
1
∈(1,2),使得[*]且至少存在一点ξ
2
∈(2,η),使得φ
’
(ξ
2
)[*]再由拉格朗日微分中值定理可知,至少存在一点ξ∈(ξ
1
,ξ
2
),使得[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/R234777K
0
考研数学二
相关试题推荐
(2014年)设函数f(x),g(x)在区间[a,b]上连续,且f(x)单调增加,0≤g(x)≤1.证明:(Ⅰ)0≤∫axg(t)dt≤(x一a),x∈[a,b](Ⅱ)∫aa+∫abg(t)dtf(x)dx≤∫abf(x)g(x)dx.
(2010年)设y1,y2是一阶线性非齐次微分方程y’+p(x)y=q(x)的两个特解,若常数λ,μ使λy1+μy2是该方程的解,λy1一μy2是该方程对应的齐次方程的解,则()
[2010年]设存在正交矩阵Q使QTAQ为对角矩阵.若Q的第1列为求a,Q.
(12年)设随机变量X与Y相互独立,且都服从参数为1的指数分布.记U=max{X,Y),V=min{X,Y}.(Ⅰ)求V的概率密度fV(v);(Ⅱ)求E(U+V).
(91年)曲线y=
(01年)已知抛物线y=pχ2+qχ(其中P<0,q>0)在第一象限内与直线χ+y=5相切,且抛物线与χ轴所围成的平面图形的面积为S.(1)问P和q为何值时,S达到最大值?(2)求出此最大值.
[2009年]设对上题中的任意向量ξ2,ξ3,证明ξ1,ξ2,ξ3线性无关.
[2010年]设二维随机变量(X,Y)的概率密度为f(x,y)=Ae-2x2+2xy-y2,-∞<x<+∞,-∞<y<+∞.求常数A及条件概率密度fY|X(y|x).
(1990年)极限=______.
[2012年]设计算行列式|A|;
随机试题
罗汉松是松科的常绿乔木。
婴儿出生时躯干红,四肢青紫,心率80次/分,呼吸20次/分,不规则,四肢能活动,弹足底有皱眉反应。该婴儿最恰当的诊断是
下列有关法律的表述正确的是哪项?
甲公司计划进入C国某省市场,经过对该省诸多经销商的考核,甲公司只挑选了一家在该省影响力较大的经销商,签订了未来五年在该省的经销合同。甲公司采取的分销渠道类型属于()。
注册会计师负责审计甲公司20×8年度财务报表。在进行曲控制测度时,注册会计师遇到下列事项,请代为做出正确的专业判断。在测度自动化应用控制的运用有效性时,注册会计师通常需要获取的审计证据有()。
公安机关赔偿是一种刑事赔偿。()
以下有关夸美纽斯的说法,正确的一项是()
母亲:这学期冬冬的体重明显下降,我看这是因为他的学习负担太重了。父亲:冬冬体重下降和学习负担没有关系。医生说冬冬营养不良,我看这是冬冬体重下降的原因。以下哪项如果为真,最能对父亲的意见提出质疑?
数据的独立性包括()。
Thereisaphenomenonthatsociologistscallreferenceanxiety—or,morepopularly,keepingupwiththe【C1】Jo______.Accordingto
最新回复
(
0
)