首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(2008年试题,20)(I)证明积分中值定理:设f(x)在[a,b]上连续,则存在ζ∈[a,b],使(Ⅱ)若φ(x)有二阶导数,且满足φ(2)>φ(1)证明至少存在一点ζ∈(1,3),使得φ’’(η)
(2008年试题,20)(I)证明积分中值定理:设f(x)在[a,b]上连续,则存在ζ∈[a,b],使(Ⅱ)若φ(x)有二阶导数,且满足φ(2)>φ(1)证明至少存在一点ζ∈(1,3),使得φ’’(η)
admin
2013-12-18
45
问题
(2008年试题,20)(I)证明积分中值定理:设f(x)在[a,b]上连续,则存在ζ∈[a,b],使
(Ⅱ)若φ(x)有二阶导数,且满足φ(2)>φ(1)
证明至少存在一点ζ∈(1,3),使得φ
’’
(η)<0.
选项
答案
(I)设M和m分别是连续函数f(x)在区间[a,b](b>a)上的最大值和最小值,则有[*]不等式两边同除以(b一a),得到[*]显然[*]是介于函数f(x)的最大值和最小值之间的,根据闭区间上连续函数的介值定理可知,在区间[a,b]上至少存在一点ξ,使得函f(x)在该点处的函数值和[*]相等,即[*](a≤ξ≤b),等式两边同乘(b一a)可得[*](Ⅱ)由积分中值定理可得,至少存在一点η∈(2,3),使得[*]所以有φ(2)>φ(1),φ(2)>φ(η)因为φ(x)有二阶导数,所以由拉格朗日微分中值定理可知,至少存在一点ξ
1
∈(1,2),使得[*]且至少存在一点ξ
2
∈(2,η),使得φ
’
(ξ
2
)[*]再由拉格朗日微分中值定理可知,至少存在一点ξ∈(ξ
1
,ξ
2
),使得[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/R234777K
0
考研数学二
相关试题推荐
(96年)设f(χ)有连续导数,f(0)=0,f′(0)≠0,F(χ)=∫0χ(χ2-t2)f(t)dt,且当χ→0时,F′(χ)与χk是同阶无穷小,则k等于
(2003年)设n=1,2,…,则下列命题正确的是()
(91年)设A和B是任意两个概率不为零的互不相容事件,则下列结论中肯定正确的是:【】
[2018年]设则().
(2010年)(Ⅰ)比较∫01|lnt|[ln(1+t)]ndt与∫01tn|lnt|dt(n=1,2,…)的大小,说明理由;(Ⅱ)记un=∫01|lnt|[ln(1+t)]ndt(n=1,2,…),求极限
(1998年)设X1,X2,X3,Xn是来自正态总体N(0,22)的简单随机样本,X=a(X1-2X2)2+b(3X3-4X4)2。则当a=______,b=_______时,统计量X服从χ2分布,其自由度为_______。
(2011年)求不定积分
(2010年)设f1(x)为标准正态分布的概率密度,f2(x)为[-1,3]上均匀分布的概率密度,若有为概率密度,则a,b应满足()
∫sinxdx/(1+sinx).
(2003年试题,十一)若矩阵相似于对角矩阵A,试确定常数a的值;并求可逆矩阵P使P-1AP=A
随机试题
胸锁乳突肌()
下列哪项不是甲状腺危象的治疗
关于肝硬化自发性腹膜炎腹水特点的描述不正确的是
关于助消化药的注意事项A.应置于冷暗处贮存B.须用肠溶片,整片吞下C.不宜与抗酸药同服D.多潘立酮E.服用过量可能发生腹泻胃蛋白酶制剂,在弱酸性环境(pH1.5~2.5)中消化力最强
下列属于护理理论的基本概念的是()。
级数()。
(2015·广东)“己欲立而立人,己欲达而达人。”这句话说明教师对待同事和学生要()
以全民公决的方式否决《欧盟宪法条约》的国家有
Itmaybesummertime,butthelivingisn’teasy—notforwearyworkerswhoselastvacationisadistantmemory.Accordingtoone
PatHoganwastravelingaroundthecountryinhiscar.Oneeveninghewasdrivingalongaroadandlookingforasmallhotel.Wh
最新回复
(
0
)