首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数φ(x)在(一∞,+∞)连续,是周期为1的周期函数,∫01φ(x)dx=0,函数f(x)在[0,1]有连续导数,求证: (Ⅰ)∫0xφ(t)dt是以1为周期的周期函数且在(一∞,+∞)有界. (Ⅱ)令an=∫01f(x)φ(nx)dx
设函数φ(x)在(一∞,+∞)连续,是周期为1的周期函数,∫01φ(x)dx=0,函数f(x)在[0,1]有连续导数,求证: (Ⅰ)∫0xφ(t)dt是以1为周期的周期函数且在(一∞,+∞)有界. (Ⅱ)令an=∫01f(x)φ(nx)dx
admin
2017-11-23
43
问题
设函数φ(x)在(一∞,+∞)连续,是周期为1的周期函数,∫
0
1
φ(x)dx=0,函数f(x)在[0,1]有连续导数,求证:
(Ⅰ)∫
0
x
φ(t)dt是以1为周期的周期函数且在(一∞,+∞)有界.
(Ⅱ)令a
n
=∫
0
1
f(x)φ(nx)dx,则a
n
=一∫
0
1
f’(x)[∫
0
x
φ(nt)dt]dx
(Ⅲ)级数
收敛.
选项
答案
(Ⅰ)考察 ∫
0
x+1
φ(t)dt一∫
0
x
(t)dt=∫
x
x+1
φ(t)dt=∫
0
1
φ(t)dt=0 (因为(∫
x
x+1
φ(t)dt)’=φ(x+1)一φ(x)=0,∫
x
x+1
φ(t)dt为常数) 因此∫
0
x
φ(t)dt以1为周期. 因为∫
0
x
φ(t)dt在(一∞,+∞)连续=>∫
0
x
φ(t)dt在[0,1]有界,又它以1为周期=>∫
0
x
φ(t)dt 在(一∞,+∞)有界. (Ⅱ)按要证明的结论提示我们,用分部积分法改写a
n
: a
n
=∫
0
1
f(x)d(∫
0
x
φ(nt)dt) =(f(x)∫
0
x
φ(nt)dt)|
0
1
一∫
0
x
f’(x)(∫
0
x
φ(nt)dt)dx =一∫
0
x
f’(x)(∫
0
x
φ(nt)dt)dx 其中 [*] (Ⅲ)先估计a
n
. |a
n
|≤|∫
0
1
f’(x)(∫
0
x
φ(nt)dt)dx| 因f’(x)在[0,1]连续,=>|f’(x)|≤M
0
(x∈[0,1]),又因 |∫
0
x
φ(nt)dt|=[*]|∫
0
nx
φ(s)ds| ∫
0
x
φ(s)ds在(一∞,+∞)有界(题(Ⅰ)的结论)=> |∫
0
x
φ(nt)dt|≤[*] M
0
,M
2
,为某常数. 于是 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/c8r4777K
0
考研数学一
相关试题推荐
记曲面z=x2+y2一2x-y在区域D:x≥0,y≥0,2x+y≤4上的最低点P处的切平面为π,曲线在点Q(1,1,一2)处的切线为l,求点P到直线l在平面π上的投影l’的距离d.
求下列曲面的方程:以为准线,母线平行于z轴的柱面方程;
设函数f(x)在区间(一δ,δ)内有定义,若当x∈(一δ,δ)时,恒有|f(x)|≤x2,则x=0必是f(x)的()
求直线在平面π:a—y+3z+8=0的投影方程.
过三点A(1,1,一1),B(-2,一2,2)和C(1,一1,2)的平面方程是______.
利用夹逼定理证明:
设随机变量X满足|X|≤1,且,在{一1<X<1)发生的情况下,X在(一1,1)内任一子区间上的条件概率与该子区间长度成正比.
设α1,α2,α3,β1,β2都是四维列向量,且|A|=|α1,α2,α3,β1|=m,|B|=|α1,α2,β2,α3|=n,则|α3,α2,α1,β1+β2|为().
求椭圆与椭圆所围成的公共部分的面积.
设数列{xn}满足0<x1<π,xn+1=sinxn(n=1,2,…).证明存在,并求该极限;
随机试题
尿瘘修补术后病人,留置尿管的时间为( )。
目前,CT机在头颅标准扫描模式时,其空间分辨率约为
A.龋病三级预防B.龋病二级预防C.龋病一级预防D.以上都不是E.属于治疗,不是预防口腔卫生宣教属于
治疗肠燥便秘的要有
编制工程量清单时,若有总承包服务费,则应列在()中。
下列纳税人的年应税销售额超过增值税一般纳税人认定标准,必须认定为一般纳税人的是()。
由法定责任者履行法定的事务处置权的决策性活动是()。
“反对责任擅断和反对有害追溯”,体现的法律归责原则是()。
Computersareoftenhardtorelateto,frustratingalotofpeople.AppleComputerInc’sMacintosh,withitsgraphicalsymbols,
How’sthisforunintendedconsequences?Someofthebiggestbeneficiaries(受惠者)ofthewomen’smovementhavebeenmarriedmen.Acc
最新回复
(
0
)