首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数φ(x)在(一∞,+∞)连续,是周期为1的周期函数,∫01φ(x)dx=0,函数f(x)在[0,1]有连续导数,求证: (Ⅰ)∫0xφ(t)dt是以1为周期的周期函数且在(一∞,+∞)有界. (Ⅱ)令an=∫01f(x)φ(nx)dx
设函数φ(x)在(一∞,+∞)连续,是周期为1的周期函数,∫01φ(x)dx=0,函数f(x)在[0,1]有连续导数,求证: (Ⅰ)∫0xφ(t)dt是以1为周期的周期函数且在(一∞,+∞)有界. (Ⅱ)令an=∫01f(x)φ(nx)dx
admin
2017-11-23
24
问题
设函数φ(x)在(一∞,+∞)连续,是周期为1的周期函数,∫
0
1
φ(x)dx=0,函数f(x)在[0,1]有连续导数,求证:
(Ⅰ)∫
0
x
φ(t)dt是以1为周期的周期函数且在(一∞,+∞)有界.
(Ⅱ)令a
n
=∫
0
1
f(x)φ(nx)dx,则a
n
=一∫
0
1
f’(x)[∫
0
x
φ(nt)dt]dx
(Ⅲ)级数
收敛.
选项
答案
(Ⅰ)考察 ∫
0
x+1
φ(t)dt一∫
0
x
(t)dt=∫
x
x+1
φ(t)dt=∫
0
1
φ(t)dt=0 (因为(∫
x
x+1
φ(t)dt)’=φ(x+1)一φ(x)=0,∫
x
x+1
φ(t)dt为常数) 因此∫
0
x
φ(t)dt以1为周期. 因为∫
0
x
φ(t)dt在(一∞,+∞)连续=>∫
0
x
φ(t)dt在[0,1]有界,又它以1为周期=>∫
0
x
φ(t)dt 在(一∞,+∞)有界. (Ⅱ)按要证明的结论提示我们,用分部积分法改写a
n
: a
n
=∫
0
1
f(x)d(∫
0
x
φ(nt)dt) =(f(x)∫
0
x
φ(nt)dt)|
0
1
一∫
0
x
f’(x)(∫
0
x
φ(nt)dt)dx =一∫
0
x
f’(x)(∫
0
x
φ(nt)dt)dx 其中 [*] (Ⅲ)先估计a
n
. |a
n
|≤|∫
0
1
f’(x)(∫
0
x
φ(nt)dt)dx| 因f’(x)在[0,1]连续,=>|f’(x)|≤M
0
(x∈[0,1]),又因 |∫
0
x
φ(nt)dt|=[*]|∫
0
nx
φ(s)ds| ∫
0
x
φ(s)ds在(一∞,+∞)有界(题(Ⅰ)的结论)=> |∫
0
x
φ(nt)dt|≤[*] M
0
,M
2
,为某常数. 于是 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/c8r4777K
0
考研数学一
相关试题推荐
求函数f(x,y)=x2一xy+y2在点M(1,1)沿与x轴的正向组成a角的方向1上的方向导数,在怎样的方向上此导数有:(1)最大的值;(2)最小的值;(3)等于0.
求下列曲面的方程:以为准线,顶点在原点的锥面方程.
求下列曲面的方程:以为准线,母线平行于z轴的柱面方程;
设函数f(x)在区间(一δ,δ)内有定义,若当x∈(一δ,δ)时,恒有|f(x)|≤x2,则x=0必是f(x)的()
设A是正交矩阵,且|A|<0.证明:|E+A|=0.
设来自总体X的简单随机样本X1,X2,…,Xn,总体X的概率分布为其中0<θ<1.分别以v1,v2表示X1,X2,…,Xn中1,2出现的次数,试求当样本值为1,1,2,1,3,2时的最大似然估计值和矩估计值.
计算线积分(y2+z2)dx+(z2+x2)dy+(x2+y2)dz,其中c是曲线x2+y2+z2=2Rx,x2+y2+z2=2ax(z>0,0<a<R),且按此方向进行,使它在球的外表面上所围区域∑在其左方。
求下面线性方程组的解空间的维数:并问ξ1=[9,-1,2,-1,1]T是否属于该解空间.
确定正数a,b的值,使得=2.
随机试题
驾驶机动车在这个路口允许掉头。
柴油发动机尾气中有害物有一氧化碳(CO)、碳氢化合物(HC)、氮氧化物(NOx)和氧气(O2)。()
不同的病变需要优选最适宜的检查方法。诊断眼眶爆裂骨折,最好的检查方法是
急性糜烂性胃炎的确诊应依据
外周血象检查出现核右移的疾病是
造成约束、限制能量措施失效或破坏的各种不安全因素称做( )。
假设初始为空的散列表的地址空间为(0…10),散列函数为H(key)=keymod11,采用线性探测再散列法处理冲突,若依次插入关键字37、95、27、14、48,则最后一个关键字值48的插入位置是()。
科举考试是在()时期终结的。
下图是网络地址转换NAT的一个示例图中①和②是地址转换之后与转换之前的一对地址(含端口号),它们依次应为()。
有如下的程序:#include<iostream>usingnamespacestd;classAT{friendostream&operator<<(ostream&,AT);}at;os
最新回复
(
0
)