首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
讨论曲线y=2lnx与y=2x+ln2x+k在(0,+∞)内的交点个数(其中k为常数).
讨论曲线y=2lnx与y=2x+ln2x+k在(0,+∞)内的交点个数(其中k为常数).
admin
2017-10-23
46
问题
讨论曲线y=2lnx与y=2x+ln
2
x+k在(0,+∞)内的交点个数(其中k为常数).
选项
答案
令f(x)=2x+ln
2
x+k一2lnx(x∈(0,+∞)),于是本题两曲线交点个数即为函数f(x)的零点个数.由 f’(x)=2+[*](x+lnx一1), 令f’(x)=0,可解得唯一驻点x
0
=1∈(0,+∞). 当0<x<1时f’(x)<0,f(x)在(0,1]单调减少;而当x>1时f’(x)>0,f(x)在[1,+∞)单调增加.于是f(1)=2+k为f(x)在(0,+∞)最小值.因此f(x)的零点个数与最小值f(1)=2+k的符号有关. 当f(1)>0即k>一2时,f(x)在(0,+∞)内恒为正值函数,无零点. 当f(1)=0即k=一2时,f(x)在(0,+∞)内只有一个零点x
0
=1. 当f(1)<0即k<一2时,需进一步考察f(x)在x→0
+
与x→+∞的极限: [*] 由连续函数的零点定理可得,[*]x
1
∈(0,1)与x
2
∈(1,+∞)使得f(x
1
)=f(x
2
)=0,且由f(x)在(0,1)与(1,+∞)内单调知f(x)在(0,1)内与(1,+∞)内最多各有一个零点,所以当k<一2时,f(x)在(0,+∞)内恰有两个零点.
解析
转载请注明原文地址:https://kaotiyun.com/show/cEX4777K
0
考研数学三
相关试题推荐
设A为三阶矩阵,方程组AX=0的基础解系为α1,α2,又λ=一2为A的一个特征值,其对应的特征向量为α3,下列向量中是A的特征向量的是().
设F(x)为f(x)的原函数,且当x≥0时,f(x)F(x)=,又F(0)=1,F(x)>0,求f(x).
已知二元函数f(x,y)满足=u2+v2,求a,b.
设(ay一2xy2)dx+(bx2y+4x+3)dy为某个二元函数的全微分,则a=________,b=________。
设随机变量X,Y相互独立,且X~,又设向量组α1,α2,α3线性无关,求α1+α2,α2+Xα3,Yα1线性相关的概率。
设随机变量X满足|X|≤1,且P(X=一1)=,在{一1<X<1}发生的情况下,X在(一1,1)内任一子区间上的条件概率与该子区间长度成正比.(1)求X的分布函数;(2)求P(X<0).
甲、乙两人独立对同一目标进行射击,命中目标概率分别为60%和50%.(1)甲、乙两人同时向目标射击,求目标被命中的概率;(2)甲、乙两人任选一人,由此人射击,目标已被击中,求是甲击中的概率.
设k为常数,方程kx一+1=0在(0,+∞)内恰有一根,求k的取值范围.
设X~N(1,σ2),Y~N(2,σ2)为两个相互独立的总体,X1,X2,…,Xm与Y1,Y2,…,Yn分别为来自两个总体的简单样本,服从________分布.
设A,B,C是任意三个事件,事件D表示A,B,C中至少有两个事件发生,则下列事件中与D不相等的是()
随机试题
患儿女性,1岁2个月,主因“间断发热皮疹伴反复口腔溃疡5个月余,双膝关节饱满10天”。查体:心率128次/min,呼吸25次/min,神志清楚,精神反应好,前囟大小0.2cm×0.2cm,张力不高。呼吸平稳。双肘关节伸面、足跟可见散在淡红色斑丘疹。双眼睑无
心理评估的常用方法,不包括
A.氨溴索B.乙酰半胱氨酸C.可待因D.苯丙哌林E.右美沙芬具有旋光性,药用其右旋体的是
账套备份文件只能经过()功能处理后,才能打开。
下列利息支出,可以在企业所得税税前全额扣除的是()。
朱熹在《朱子全书.论学》中写道:“宽着期限,紧着课程;小立课程,大作功夫”。这里的“课程”指的是()。
下列古都中哪个被称为是“六朝古都”?()
WhatisEinstein’sgreatestcontributiontohumanbeings?
Moreparentsarenowchoosingtohomeschoolinsteadofsendingtheirchildrentopublicorprivateschools.Butwhatishomescho
A、Bothglobalwarmingandbelow-averagerainfall.B、Bothbelow-averagerainfallandnaturalclimatevariability.C、Globalwarmin
最新回复
(
0
)