首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
讨论曲线y=2lnx与y=2x+ln2x+k在(0,+∞)内的交点个数(其中k为常数).
讨论曲线y=2lnx与y=2x+ln2x+k在(0,+∞)内的交点个数(其中k为常数).
admin
2017-10-23
47
问题
讨论曲线y=2lnx与y=2x+ln
2
x+k在(0,+∞)内的交点个数(其中k为常数).
选项
答案
令f(x)=2x+ln
2
x+k一2lnx(x∈(0,+∞)),于是本题两曲线交点个数即为函数f(x)的零点个数.由 f’(x)=2+[*](x+lnx一1), 令f’(x)=0,可解得唯一驻点x
0
=1∈(0,+∞). 当0<x<1时f’(x)<0,f(x)在(0,1]单调减少;而当x>1时f’(x)>0,f(x)在[1,+∞)单调增加.于是f(1)=2+k为f(x)在(0,+∞)最小值.因此f(x)的零点个数与最小值f(1)=2+k的符号有关. 当f(1)>0即k>一2时,f(x)在(0,+∞)内恒为正值函数,无零点. 当f(1)=0即k=一2时,f(x)在(0,+∞)内只有一个零点x
0
=1. 当f(1)<0即k<一2时,需进一步考察f(x)在x→0
+
与x→+∞的极限: [*] 由连续函数的零点定理可得,[*]x
1
∈(0,1)与x
2
∈(1,+∞)使得f(x
1
)=f(x
2
)=0,且由f(x)在(0,1)与(1,+∞)内单调知f(x)在(0,1)内与(1,+∞)内最多各有一个零点,所以当k<一2时,f(x)在(0,+∞)内恰有两个零点.
解析
转载请注明原文地址:https://kaotiyun.com/show/cEX4777K
0
考研数学三
相关试题推荐
设二元函数f(x,y)=|x-y|φ(x,y),其中φ(x,y)在点(0,0)处的某邻域内连续.证明:函数f(x,y)在点(0,0)处可微的充分必要条件是φ(0,0)=0.
设随机变量(X,Y)的联合密度函数为f(x,y)=(1)求P(X>2Y);(2)设Z=X+Y,求Z的概率密度函数.
设随机变量X与Y相互独立,下表列出二维随机变量(X,Y)的联合分布律及关于X和Y的边缘分布律的部分数值,试将其余的数值填入表中空白处.
设A为n阶非奇异矩阵,α是n维列向量,b为常数,P=(1)计算PQ;(2)证明PQ可逆的充分必要条件是αTA-1α≠b.
设f(x)在x=0处连续,且=一1,则曲线y=f(x)在(2,f(2))处的切线方程为________.
设f(x)=3x2+Ax-3(x>0),A为正常数,问A至少为多少时,f(x)≥20?
设f(x)二阶连续可导且f(0)=f’(0)=0,f"(x)>0.曲线y=f(x)上任一点(x,f(x))(x≠0)处作切线,此切线在x轴上的截距为u,求.
设总体X的概率分布为是未知参数.用样本值3,1,3,0,3,1,2,3求θ的矩估计值和最大似然估计值.
设X服从参数为λ的指数分布,对X作三次独立重复观察,至少有一次观测值大于2的概率为,则λ=________.
某厂家生产的每台仪器,以概率0.7可以直接出厂,以概率0.3需进一步调试,经调试后以概率0.8可以出厂,以概率0.2定为不合格产品不能出厂,现该厂新生产了n(n≥2)台仪器(假设各台仪器的生产过程相互独立),求至少有两台不能出厂的概率θ
随机试题
高效液相色谱法用于含量测定时,对系统性能的要求
刚体作平动时,某瞬时体内各点的速度与加速度为:
()的主要投资对象是资本市场上的上市股票与债券,货币市场上的短期票据与银行同业拆借,以及金融期货、黄金、期权交易、不动产等。
根据现行国家工程建设消防技术标准的要求,下列供暖系统的设置不符合相关规定的是()。
居民乙因拖欠居民甲180万元款项无力偿还,2010年6月经当地有关部门调解,以房产抵偿该笔债务,居民甲因此取得该房产的产权并支付给居民乙差价款20万元。假定当地省政府规定的契税税率为5%。下列表述中正确的是()。(2010年)
阅读下列材料:为了让高中一年级学生能够完整地体验信息处理的全过程,教师通常会设计一个综合性的主题学习活动。“我的悠长假期”主题学习活动即以图像处理为栽体,让学生体验信息采集、加工与表达的全过程。下面是本次主题活动方案:活动目的:以图片处理为载体体验信息
“三弦”这种乐器属于民族乐器中的()类。
元认知指的是对认知的认知,即认知主体关于自己认知过程的知识和调节这些过程的能力,对思维和学习活动的知识和控制。元认知的实质是对认知活动的自我意识和自我调节。根据上述定义,以下包含元认知的是()。
DerVatergibt______TochterdenWagen.
I_______thepicturefromthewallinordertocleanit.
最新回复
(
0
)