首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设非零n维列向量α,β正交且A=αβT.证明:A不可以相似对角化.
设非零n维列向量α,β正交且A=αβT.证明:A不可以相似对角化.
admin
2016-09-12
54
问题
设非零n维列向量α,β正交且A=αβ
T
.证明:A不可以相似对角化.
选项
答案
令λ为矩阵A的特征值,X为λ所对应的特征向量,则AX=λX,显然A
2
X=λ
2
X, 因为α,β正交,所以A
2
=αβ
T
.αβ
T
=O,于是λ
2
X=0,而X≠0,故矩阵A的特征值为λ
1
=λ
2
=…=λ
n
=0. 又由α,β都是非零向量得A≠O, 因为r(0E-A)=r(A)≥1,所以n-r(OE-A)≤n-1<n,所以A不可相似对角化.
解析
转载请注明原文地址:https://kaotiyun.com/show/cFt4777K
0
考研数学二
相关试题推荐
设f(x)在[0,1]上连续,且f(0)=f(1),求证:存在x∈[0,1],使.
已知函数y=y(x)由方程ey+6xy+x2-1=0确定,则y"(0)=________。
设曲线y=en在点(1,1)处的切线交x轴于点(ξn,0),求
设f(x)=1/(1+31/x),则x=0为f(x)的________间断点.
已知函数z=f(x,y)的全微分dz=2xdx-2ydy,并且f(1,1)=2,求f(x,y)在椭圆域上的最大值和最小值。
求二重积分的值,其中D是由直线y=x,y=-1及x=1围成的平面区域。
因为f(x)在[0,1]上二阶可导,所以f(x)在[0,1]上连续且f(0)=f(1)=0,由闭区间上连续函数最值定理知,f(x)在[0,1]取到最小值且最小值在(0,1)内达到,即存在c∈(0,1),使得f(c)=-1,再由费马定理知f’(c)=0,根据
设(X,Y)为连续型随机向量,已知X的密度函数fX(x)及对一切x,在X=x的条件下Y的条件密度fY|X(y|x).求:(1)密度函数f(x,y);(2)Y的密度函数fY(y);(3)条件密度函数fX|Y(x|y).
设矩阵是矩阵A*的一个特征向量,A是α对应的特征值,其中A*是矩阵A的伴随矩阵.试求a,b和λ的值.
设二次型f(x1,x2,x3)=xTAX=ax12+2x22-2x32+2bx1x3(6>o),其中二次型的矩阵A的特征值之和为1,特征值之积为-12.利用正交变换将二次型,化为标准形,并写出所用的正交变换和对应的正交矩阵.
随机试题
Ifyou’reheadingforyournearestbranchofWaterstones,thebiggestbookretailerintheUK,insearchoftheDuchessofSusse
促进神经系统发育最重要的激素是
某种公猪,80kg,不宜留作种用,欲对其行去势术,打开总鞘膜后暴露精索,摘除睾丸的最佳方法是将精索
病人王某,40岁,因驾车发生交通事故而入院。体检:昏迷,瞳孔大小不等,BP60/40mmHg,P130次/分,R30.次/分,且费力、不规则,需作进一步诊断。病人24小时液体维持,若下午3时换上500ml药液,每分钟滴速50滴,预计何时完成
如果一项租赁在实质上没有转移与租赁资产所有权有关的全部风险和报酬,那么该项租赁应认定为经营租赁。()
如果各种投放增加的比例10%,产出增加的比例是8%,说明了该企业规模报酬递减。()
主张课程内容的组织以儿童活动为中心,提倡“做中学”的课程理论是()。
北宋画家郭熙在《笔法记》中提出“三远法”,高度概括了山水画的取景方法。()
班级越大,内部越容易形成各种非正式小群体。()
A、Itwasexciting.B、Itwasamusing.C、Itwassurprising.D、Itwasquiteboring.B
最新回复
(
0
)