首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设z=z(x,y)是由方程F(xy,y+z,xz)=0所确定的隐函数,且F具有一阶连续偏导数,求
设z=z(x,y)是由方程F(xy,y+z,xz)=0所确定的隐函数,且F具有一阶连续偏导数,求
admin
2019-02-20
76
问题
设z=z(x,y)是由方程F(xy,y+z,xz)=0所确定的隐函数,且F具有一阶连续偏导数,求
选项
答案
【解法一】 此题既有复合函数运算又有隐函数求导问题,将隐函数方程对x,y求偏导数,则有 [*] 【解法二】 把方程F(xy,y+z,xz)=0看成关于(x,y)的恒等式,两端求全微分,由一阶全微分形式不变性可得 0=dF(xy,y+z,xz)=F’
1
d(xy)+F’
2
d(y+z)+F’
3
d(xz) =F’
1
(ydx+xdy)+F’
2
(dy+dz)+F’
3
(zdx+xdz) =(yF’
1
+zF’
3
)dx+(xF’
1
+F’
2
)dy+(F’
2
+xF’
3
)dz, 由此可解出 [*] 于是 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/cGP4777K
0
考研数学三
相关试题推荐
设函数p(x)和f(x)在x∈[0,+∞)上连续,且p(x)=a>0,|f(x)|≤b,a和b均为常数.试证:微分方程+p(x)y=f(x)的一切解在x∈[0,+∞)上皆有界.
计算I=∫01sin,其中0<a<b.
设A为n阶实对称矩阵,其秩为r(A)=r.(1)证明:A的非零特征值的个数必为r(A)=r.(2)举一个三阶矩阵说明对非对称矩阵上述命题不正确.
已α1=(1,一2,1,0,0),α2=(1,一2,0,1,0),α3=(0,0,1,一1,0),α4=(1,一2,3,一2,0)是线性方程组的解向量,问α1,α2,α3,α4是否构成此方程组的基础解系,假如不能,是多了还是少了?若多了,如何去除?若少
设A是n阶方阵,E+A可逆,记f(A)=(E—A)(E+A)—1,证明:(1)(E+f(A))(E+A)=2E.(2)f(f(A))=A.
已知r(A)=r1,且方程组AX=α有解,r(B)=r2,且BY=β无解,设A=[α1,α2,…,αn],B=[β1,β2,…,βn],且r[α1,α2,…,αn,β1,β2,…,βn,β]=r,则().
已知四阶方阵A=(α1,α2,α3,α4),α1,α2,α3,α4均为四维列向量,其中α1,α2线性无关,若α1+2α2—α3=β,α1+α2+α3+α4=β,2α1+3α2+α3+2α4=β,k1,k2为任意常数,那么Ax=β的通解为()
设f(χ)有连续导数,f(0)=0,f(0)≠0,F(χ)=∫0χ(χ2-t2)f(χ)dt且当χ→0,F′(χ)与χk是同阶无穷小,则k等于【】
A为三阶实对称矩阵,A的秩为2,且求A的特征值与特征向量.
设则
随机试题
在word2003中,执行“插入”菜单中的“_______”命令可在文档中插入Excel工作表。
在全部人类社会关系中,最基础的关系是
A.风邪B.火邪C.燥邪D.暑邪六淫中致病季节性最强的邪气是
判断休克已纠正除血压正常外,尿量每小时至少应稳定在
《环境保护法》中规定环境保护的基本原则包括()。
小张从六岁时被收养,养父母对他视如己出。关于小张与养父母之间的关系,下列说法不正确的是()。
下列战役按时间先后顺序排列正确的是:①武汉会战②淞沪会战③徐州会战④太原会战⑤枣庄会战
对归因理论做出详细阐述的心理学家是
西周时期辅佐周王掌管全国司法工作的官员称为()。
袁世凯窃夺辛亥革命的果实之后,建立了代表大地主和买办资产阶级利益的北洋军阀反动政权,表现在()
最新回复
(
0
)