首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设I=∫-aadx(x2+y2)dx。 (Ⅰ)作出I的积分域Ω的图形; (Ⅱ)把I改变为先对x,次对y,再对z的三次积分; (Ⅲ)把I改变为柱坐标系的累次积分; (Ⅳ)把I改变为球坐标系的累次积分; (V)任选一种积分顺序计算,的值。
设I=∫-aadx(x2+y2)dx。 (Ⅰ)作出I的积分域Ω的图形; (Ⅱ)把I改变为先对x,次对y,再对z的三次积分; (Ⅲ)把I改变为柱坐标系的累次积分; (Ⅳ)把I改变为球坐标系的累次积分; (V)任选一种积分顺序计算,的值。
admin
2018-05-25
43
问题
设I=∫
-a
a
dx
(x
2
+y
2
)dx。
(Ⅰ)作出I的积分域Ω的图形;
(Ⅱ)把I改变为先对x,次对y,再对z的三次积分;
(Ⅲ)把I改变为柱坐标系的累次积分;
(Ⅳ)把I改变为球坐标系的累次积分;
(V)任选一种积分顺序计算,的值。
选项
答案
(Ⅰ)由已知累次积分的上下限知 [*] 故在xOy面上,D
xy
={(x,y)|x
2
+y
2
≤a};由球面方程及锥面方程知,z的上限是半径为a的上半球面,z的下限是以一a为顶点的半锥面,如图6—8所示。 (Ⅱ)由积分区域的构成及范围知 I=∫
0
a
dz[*](x
2
+y
2
)dx。 (Ⅲ)由(Ⅰ)知D
xy
={(x,y)|x
2
+y
2
≤a},故有[*]. (Ⅳ)I=∫
0
2π
dθ[*]r
4
sin
3
φdr. (V)由(Ⅲ)得出I=2π∫
0
a
ρ
3
[*]πa
5
。 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/cGg4777K
0
考研数学一
相关试题推荐
直线在yOz平面上的投影直线l绕Oz轴旋转一周生成的旋转曲面的方程为________.
设随机变量X1,…,Xn(n>1)独立同分布,其方差σ2>0,记(1≤k≤n),则(1≤s,t≤n)的值等于()
设则满足AB=A,其中B≠E的所有的B=________.
某五元齐次线性方程组的系数矩阵经初等变换,化为,则自(1)χ4,χ5;(2)χ3,χ5;(3)χ1,χ5;(4)χ2,χ3.那么正确的共有()
设X1,X2,…,Xn是取自总体X的一个简单随机样本,X的概率密度为f(χ;θ)=(Ⅰ)求未知参数θ的矩估计量;(Ⅰ)若样本容量n=400,置信度为0.95,
独立地重复进行某项试验,直到成功为止,每次试验成功的概率为p.假设前5次试验每次的试验费用为10元,从第6次起每次的试验费用为5元.试求这项试验的总费用的期望值a.
已知曲线y=y(x)经过点(1,e-1),且在点(x,y)处的切线方程在y轴上的截距为xy,求该曲线方程的表达式.
设S为椭球面的上半部分,点P(x,y,z)∈S,π为S在点P处的切平面,ρ(x,y,z)为点O(0,0,0)到平面π的距离,求
设总体X,Y相互独立且都服从N(μ,σ2)分布,(X1,X2,…,Xm)与(Y1,Y2,…,Yn)分别为来自总体X,Y的简单随机样本.证明:S2=为参数σ2的无偏估计量.
随机试题
婴幼儿心力衰竭时不常出现的体征
患者,男,35岁。活动后心悸气短4年余,夜间不能平卧,咳嗽,咳粉红色泡沫样痰2小时而来诊,1周前发热,咽痛,咳嗽,呼吸32次/分,双肺布满干湿性啰音,心界向两侧扩大,心尖部2/6级收缩期吹风样杂音。问题1:最可能的诊断是
伊红亚甲蓝培养基上粪大肠菌群的典型菌落为
(2009)图示结构超静定次数为()。
应收部门的员工从远程终端键入以此运货的信息,无意间遗漏了采购单证的号码。能够检测出该差错的最佳系统控制方法是
铁路旅客运输的运送时间自从售出车票时起至按票面规定运输结束旅客出站时止。()
现为香港中国旅行社股份有限公司前身的中国旅行社成立于()年。
农历八月十五是中国传统节日中秋节,下面是中秋节别名的有()
2014年5月一2015年4月,全国租赁贸易进出口总额及同比增速均高于上月的月份有几个?
PopstarstodayenjoyastyleoflivingwhichwasoncetheprerogativeonlyofRoyalty.Wherevertheygo,peopleturnoutinthe
最新回复
(
0
)