首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)为[一a,a]上的连续偶函数,且f(x)>0,令F(x)=∫—aa|x一t|f(t)dt. (1)证明F’(x)单调增加. (2)当x取何值时,F(x)取最小值. (3)当F(x)的最小值为f(a)一a2一1时,求函数f(x).
设f(x)为[一a,a]上的连续偶函数,且f(x)>0,令F(x)=∫—aa|x一t|f(t)dt. (1)证明F’(x)单调增加. (2)当x取何值时,F(x)取最小值. (3)当F(x)的最小值为f(a)一a2一1时,求函数f(x).
admin
2016-01-15
67
问题
设f(x)为[一a,a]上的连续偶函数,且f(x)>0,令F(x)=∫
—a
a
|x一t|f(t)dt.
(1)证明F’(x)单调增加.
(2)当x取何值时,F(x)取最小值.
(3)当F(x)的最小值为f(a)一a
2
一1时,求函数f(x).
选项
答案
(1) F(x)=∫
—a
a
|x一t|f(t)dt=∫
—a
x
(x一t)f(t)dt+∫
x
a
(t一x)f(t)dt =x∫
—a
x
f(t)dt—∫
—a
x
tf(t)dt+∫
x
a
tf(t)dt一∫
x
a
f(t)dt =x∫
—a
x
f(t)dt一∫
—a
x
tf(t)dt—∫
a
x
tf(t)dz+x∫
a
x
f(t)dt, F’(x)=∫
—a
x
f(t)dt+xf(x)一xf(x)一xf(x)+∫
a
x
f(t)dt+xf(x) =∫
—a
x
f(t)dt—∫
x
a
f(t)dt. 所以F"(x)=2f(x)>0,因此F’(x)为单调增加的函数. (2)因为F’(0)=∫
—a
0
f(x)dx一∫
0
a
f(x)dx且f(x)为偶函数,所以F’(0)=0,又因为F"(0)>0,所以x=0为F(x)的唯一极小值点,也为最小值点. (3)由2∫
0
a
tf(t)dt=f(a)一a
2
一1,两边求导得 2af(a)=f’(a)一2a. 于是 f’(x)一2xf(x)=2x, 解得 f(x)=[f2xe
—∫2xdx
dx+C]e
—∫—2xdx
=[*]一1, 在2∫
0
a
tf(t)dt=f(a)一a
2
一1中令a=0,得f(0)=1,则C=2,于是 f(x)=[*]一1.
解析
转载请注明原文地址:https://kaotiyun.com/show/cPw4777K
0
考研数学一
相关试题推荐
计算
[*]
求
求曲线y=xe-x(x≥0)绕x轴旋转一周所得延展到无穷远的旋转体的体积.
设f(x)是在[a,b]上连续且严格单调的函数,在(a,b)内可导,且f(a)=a<b=f(b),证明:存在ξi∈(a,b)(i=1,2,..,n),使得.
设f(x)为连续函数,计算,其中D是由y=x3,y=1,x=-1围成的区域。
设二元函数f(x,y)=|x-y|ψ(x,y),其中ψ(x,y)在点(0,0)处的某邻域内连续,证明:函数f(x,y)在点(0,0)处可微的充分必要条件是ψ(0,0)=0.
设D={(x,y)|x2+y2≤x+y),计算二重积分max{x,y}dσ.
计算,Ω是球面x2+y2+z2=4与抛物面x2+y2=3z所围形成.
随机地取两个正数x和y,这两个数中的每一个都不超过1,试求x与y之和不超过1,积不小于0.09的概率.
随机试题
在数据库关系模型中,如果一个人可以选多门课,一门课可以被很多人选,那么,人与课程之间的联系是
Haveyou【B1】______askedyourselfwhychildrengotoschool?Youwillprobablysaythattheygo【B2】______theirownlanguagea
铝及铝合金管的焊接,可采用( )。
王某依公司法设立了以其一人为股东的有限责任公司。公司存续期间,王某实施的下列哪一行为违反公司法的规定?()
()组织模式中,企业大学是人力资源部门的子部门。
政府在依据价值规律的基础上借助于经济杠杆的调节作用,对宏观经济进行调控,这里政府所采取的手段是()。
公务员的任用,坚持任人唯贤、德才兼备的原则,注重__________。
大家都知道生物多样性对于保护地球生态环境是非常重要的.但我们的眼光都被那些肉眼可见的植物所吸引了,完全忘记了地球上最大的生物多样性宝库其实是属于微生物的,而且它们的作用要比动植物大得多。举例来说,海洋吸收了大气中至少一半的二氧化碳,这一吸收过程非常复杂,有
卡德纳斯改革
_______是中国戏曲史上的一代伟人,是元杂剧的奠基者。
最新回复
(
0
)