首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)为[一a,a]上的连续偶函数,且f(x)>0,令F(x)=∫—aa|x一t|f(t)dt. (1)证明F’(x)单调增加. (2)当x取何值时,F(x)取最小值. (3)当F(x)的最小值为f(a)一a2一1时,求函数f(x).
设f(x)为[一a,a]上的连续偶函数,且f(x)>0,令F(x)=∫—aa|x一t|f(t)dt. (1)证明F’(x)单调增加. (2)当x取何值时,F(x)取最小值. (3)当F(x)的最小值为f(a)一a2一1时,求函数f(x).
admin
2016-01-15
33
问题
设f(x)为[一a,a]上的连续偶函数,且f(x)>0,令F(x)=∫
—a
a
|x一t|f(t)dt.
(1)证明F’(x)单调增加.
(2)当x取何值时,F(x)取最小值.
(3)当F(x)的最小值为f(a)一a
2
一1时,求函数f(x).
选项
答案
(1) F(x)=∫
—a
a
|x一t|f(t)dt=∫
—a
x
(x一t)f(t)dt+∫
x
a
(t一x)f(t)dt =x∫
—a
x
f(t)dt—∫
—a
x
tf(t)dt+∫
x
a
tf(t)dt一∫
x
a
f(t)dt =x∫
—a
x
f(t)dt一∫
—a
x
tf(t)dt—∫
a
x
tf(t)dz+x∫
a
x
f(t)dt, F’(x)=∫
—a
x
f(t)dt+xf(x)一xf(x)一xf(x)+∫
a
x
f(t)dt+xf(x) =∫
—a
x
f(t)dt—∫
x
a
f(t)dt. 所以F"(x)=2f(x)>0,因此F’(x)为单调增加的函数. (2)因为F’(0)=∫
—a
0
f(x)dx一∫
0
a
f(x)dx且f(x)为偶函数,所以F’(0)=0,又因为F"(0)>0,所以x=0为F(x)的唯一极小值点,也为最小值点. (3)由2∫
0
a
tf(t)dt=f(a)一a
2
一1,两边求导得 2af(a)=f’(a)一2a. 于是 f’(x)一2xf(x)=2x, 解得 f(x)=[f2xe
—∫2xdx
dx+C]e
—∫—2xdx
=[*]一1, 在2∫
0
a
tf(t)dt=f(a)一a
2
一1中令a=0,得f(0)=1,则C=2,于是 f(x)=[*]一1.
解析
转载请注明原文地址:https://kaotiyun.com/show/cPw4777K
0
考研数学一
相关试题推荐
求极限
设D是由点O(0,0),A(1,2)及B(2,1)为顶点构成的三角形区域,计算
设3阶矩阵已知r(AB)<r(A),r(AB)<r(B),求a,b的值与r(AB).
设函数f(x)二阶连续可导且满足关系f"(x)+f’2(x)=x,且f’(0)=0,则()。
设y=sinx,0≤x≤π/2,t为________时,右图中阴影部分的面积S1与S2之和S最小?
求极限
当x→0时,下列无穷小中阶数最高的是().
设面密度为1的立体Ω由不等式≤z≤1表示,求Ω对直线L:x=y=z的转动惯量.
设函数f(x)=lnx+.(I)求f(x)的最小值;(Ⅱ)设数列{xn}满足lnxn+<1.证明xn存在,并求此极限.
(1999年试题,八)设S为椭球面的上半部分,点P(x,y,z)∈S,π为S在点P处的切平面,p(x,y,z)为点0(0,0,0)到平面π的距离,求
随机试题
熔滴过度主要靠:熔滴重力、表面张力、电磁压缩力、斑点压力(辉点压力)、等离子流力及电弧吹力等。
在政府系列中,专司各级国家机关干部管理职能的部门是()
A.下唇歪斜B.鼓腮障碍C.额纹消失D.眼睑不能闭合E.伸舌时偏向患侧舌下神经损伤表现为
对风湿性心脏病最具有诊断意义的病变是
关于综合成本的分析方法,下列说法正确的是()。
纳税人建造普通标准住宅出售,增值额超过扣除金额20%的,应按全部增值额计算缴纳土地增值税。()
催办的形式有()。
区分不同性质国家的根据是()。
根据占有人是否具有所有的意思,占有可以分为()
为使文本框具有初始值“VB”,在设计阶段正确的操作是
最新回复
(
0
)