首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是m×n矩阵,证明:存在非零的n×s矩阵B,使得AB=O的充要条件是r(A)<n.
设A是m×n矩阵,证明:存在非零的n×s矩阵B,使得AB=O的充要条件是r(A)<n.
admin
2018-09-20
33
问题
设A是m×n矩阵,证明:存在非零的n×s矩阵B,使得AB=O的充要条件是r(A)<n.
选项
答案
充分性 因r(A)<n,故AX=0有非零解,将非零解X组成B,则B≠O,且有AB=O. 必要性 若AB=O,其中B≠O,设B=[β
1
,β
2
,…,β
s
],则Aβ
i
=0,i=1,2,…,s.其中β
i
(i=1, 2,…,s)不全为0,即AX=0有非零解,故r(A)<n.
解析
转载请注明原文地址:https://kaotiyun.com/show/cRW4777K
0
考研数学三
相关试题推荐
设A是n阶非零矩阵,Am=0,下列命题中不一定正确的是
设f(x)连续,证明:
设函数f(x)在[a,+∞)上连续,f’’(x)在(a,+∞)内存在且大于零.记F(x)=.证明:F(x)在(a,+∞)内单调增加.
已知α=(1,-2,2)T是二次型xTAx=ax12+4x22+bx32-4x1x2+4x1x3-8x2x3矩阵A的特征向量,求正交变换化二次型为标准形,并写出所用正交变换.
已知A2=0,A≠0,证明A不能相似对角化.
设A是3阶实对称矩阵,特征值是0,1,2.如果λ=0与λ=1的特征向量分别是α1=(1,2,1)T与α2=(1,-1,1)T,则λ=2的特征向量是_______.
设n阶矩阵A=(α1,α2,…,αn)的前n一1个列向量线性相关,后n一1个列向量线性无关,且α1+2α2…+(n一1)αn一1=0,b=α1+α2+…+αn.证明方程组AX=b有无穷多个解;
参数a取何值时,线性方程组有无数个解?求其通解.
设A为n阶矩阵,α1,α2,α3为n维列向量,其中α1≠0,且Aα1=α1,Aα2=α1+α2,Aα3=α2+α3,证明:α1,α2,α3线性无关.
随机试题
幼儿6岁左右,最先萌出的恒牙是“第一恒磨牙”,又称_______。
EmilyDickinsonwasanineteenth-centuryAmericanwomanwholivedherlifecompletelyunknowntoanyoneexceptherfamilyanda
下列哪项关于小肠“泌别清浊”功能的叙述是不正确的
某先天性心脏病患者,妊娠8周出现急性心力衰竭。其处理方法正确的是
关于腹部摄影注意事项的叙述,错误的是
女,30岁。右下智齿舌向远中倾斜,牙冠完全萌出,此牙的拔除方法宜采用
下面不属于工程建设其他投资的是:
下列属于投资活动产生的资金流量的项目有( )。
轩辕黄帝的三大行宫指的是()。
美元标价法
最新回复
(
0
)