首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A=(α1,α2,α3,α4,α5),其中α1,α3,α5线性无关,且α2一3α1一α3一α5,α4—2α1+α3+6α5,求方程组AX=0的通解.
设A=(α1,α2,α3,α4,α5),其中α1,α3,α5线性无关,且α2一3α1一α3一α5,α4—2α1+α3+6α5,求方程组AX=0的通解.
admin
2016-10-23
88
问题
设A=(α
1
,α
2
,α
3
,α
4
,α
5
),其中α
1
,α
3
,α
5
线性无关,且α
2
一3α
1
一α
3
一α
5
,α
4
—2α
1
+α
3
+6α
5
,求方程组AX=0的通解.
选项
答案
因为α
1
,α
3
,α
5
线性无关,又α
2
,α
4
可由α
1
,α
3
,α
5
线性表示,所以r(A)=3,齐次线性方程组AX=0的基础解系含有两个线性无关的解向量.
解析
转载请注明原文地址:https://kaotiyun.com/show/uZT4777K
0
考研数学三
相关试题推荐
设A是n×m矩阵,B是m×n矩阵,其中n
设α1,α2,…,αr,β都是n维向量,β可由α1,α2,…,αr线性表示,但β不能由α1,α2,…,αr-1线性表示,证明:αr可由α1,α2,…,αr-1,β线性表示.
二次型f(x1,x2,x3)=(x1+ax2-2x3)2+(2x2+3x3)2+(x1+3x2+ax3)2正定的充分必要条件为________.
设n阶实对称矩阵A满足条件A2+6A+8E=O,且A+tE是正定矩阵,则t的取值范围为_______.
若函数f(x)在(a,b)内具有二阶导数,且f(x1)=f(x2)=f(x3),其中a<x1<x2<x3<b,证明:在(x1,x3)内至少有一点ε,使得f〞(ε)=0.
验证函数u=e-kn2tsinnx满足热传导方程ut=kuxx.
设n元线性方程组Ax=b,其中,x=(x1,…,xn)T,b=(1,0,…,0)T.(I)证明行列式|A|=(n+1)an;(Ⅱ)a为何值时,方程组有唯一解?求x1;(Ⅲ)a为何值时,方程组有无穷多解?求通解.
设随机变量X服从正态分布N(0,1),对给定的α∈(0,1),数uα满足P{X>uα}=α,若P{|x|<x}=α,则x等于().
已知β1,β2是非齐次线性方程组Ax=b的两个不同的解,α1,α2是对应齐次线性方程组Ax=0的基础解系,k1,k2为任意常数,则方程组Ax=b的通解必是
随机试题
[*]
心智技能也可称作认知技能或智力技能,它是借助______在头脑中完成的智力活动方式。
对于气焊焊口采用的热处理方法是( )。
在浅埋暗挖修建隧道及地下工程的开挖方法中,双侧壁导坑法的适用条件是()。
按照编制程序和用途,建筑工程定额分为()。
某公安局督察机构根据已收集到的证据,认为民警王某的行为已涉嫌职务犯罪。依据《公安机关督察条例》的规定,该局督察机构对其应当:
谷子大约在5000万年前开始从水稻中分化出来,分化之后的基因组结构仍存在明显的共线性。研究人员发现谷子的2号和9号染色体分别由水稻的7号和9号、3号和10号染色体融合而成。同时,他们发现这两次融合事件也发生在高粱的染色体中,由此,研究人员推测这两次染色体融
已知某垄断厂商的成本函数为TC=5Q2+100Q,产品的需求函数为P=900—5Q,请计算:
某一次座谈会共有8个人参加,其中四个是东北人,两个是沈阳人,一个是河南人,两个是老年人,三个是青年人。假设上述介绍涉及本次座谈会的所有人。对此,甲、乙、丙分别有下列几个判断。甲说:“河南人不是青年人。”乙说:“青年人都是东北人。”丙说:“沈阳人都是青年人。
[*]
最新回复
(
0
)