首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[a,b]可导,且f’+(a)与f’-(b)反号,证明:存在ξ∈(a,b)使f’(ξ)=0.
设f(x)在[a,b]可导,且f’+(a)与f’-(b)反号,证明:存在ξ∈(a,b)使f’(ξ)=0.
admin
2016-10-20
83
问题
设f(x)在[a,b]可导,且f’
+
(a)与f’
-
(b)反号,证明:存在ξ∈(a,b)使f’(ξ)=0.
选项
答案
(1)由极限的不等式性质和题设知,存在δ>0使得a+δ<b-δ,且 [*] 于是 f(a+δ)>f(a),f(b-δ)>f(b). 这表明f(x)在[a,b]上的最大值必在(a,b)内某点取到,即存在ξ∈(a,b)使得f(ξ)=[*].由费马定理知f’(ξ)=0. (2)f(x)在[a,b]必有最大值.若最大值在x=a(或x=b)取到,由最值点处的导数性质知,f’
+
(a)≤0(f’
-
(b)≥0),这与已知矛盾.因此f(x)在[a,b]的最大值不能在x=a及x=b取到,即[*],x=ξ是f(x)的极值点,f’(ξ)=0.
解析
因f(x)在[a,b]上可导,因而必连续,故存在最大值和最小值.如能证明最大值或最小值在(a,b)内取得,那么这些点的导数值必为零,从而证明了命题.注意,由于题设条件中未假设f’(x)连续,所以不能用连续函数的介值定理来证明.证明时不妨设f’
+
(a)>0且f’
-
(b)<0.
转载请注明原文地址:https://kaotiyun.com/show/riT4777K
0
考研数学三
相关试题推荐
A、 B、 C、 D、 C
加工一个产品要经过三道工序,第一、二、三道工序不出废品的概率分别为0.9、0.95、0.8,若假定各工序是否出废品是独立的,求经过三道工序生产出的是废品的概率.
证明[*]
在一通信渠道中,能传送字符AAAA,BBBB,CCCC三者之一,由于通信噪声干扰,正确接收到被传送字母的概率为0.6,而接收到其他两个字母的概率均为0.2,假设前后字母是否被歪曲互不影响.(1)求收到字符ABCA的概率;(2)若收到字符
求下列函数的极值:(1)f(x,y)=6(x-x2)(4y-y2);(2)f(x,y)=e2x(x+y2+2y);(4)f(x,y)=3x2y+y3-3x2-3y2+
求下列函数在指定区间上的最大值、最小值:
求密度为常数μ的均匀半球壳的质点坐标及对于z轴的转动惯量.
设总体X的概率密度为而X1,X2…,Xn是来自总体X的简单随机样本,则未知参数θ的矩估计量为_________.
设某商品的需求函数为Q=100~5P,价格P∈(0,20),Q为需求量.推导dR/dP==Q(1-Ed)(其中R为收益),并朋弹性Ed说明价格在何范围内变化时,降低价格反而使收益增加.
随机试题
借用他人的化妆品化妆,既不卫生也不礼貌。()
A.I型变态反应 B.II型变态反应 C.III型变态反应 D.Ⅳ型变态反应 E.V型变态反应青霉素过敏最常见于
下列哪项不是对有害物质的限量检查方法()
发稀疏易落,或干枯不荣,多为()。
关于幼儿园室外游戏场地布置的论述,下列哪项是不正确的?[2004年第51题]
【背景资料】某高层办公楼,总建筑面积137500m2,地下3层,地上25层。业主与施工总承包单位签订了施工总承包合同,并委托了工程监理单位。施工总承包单位完成桩基工程后,将深基坑支护工程的设计委托给了专业设计单位,并自行决定将基坑支护
如果有多种不同商品需要填报在一张报关单上,应分别填报清楚,但一张报关单上最多不能超过()项海关统计商品码的货物。
()是语言中经过压缩和省略的词语。
甲、乙同乘一列火车。甲以为乙的手提包里有钱财,于是趁乙上厕所之机,拿走了乙的手提包。事实上乙的手提包内没有财物,只有一把手枪。甲的行为构成()。
在SQLServer2008中,用于判断游标数据提取状态的全局变量是【4】。
最新回复
(
0
)