首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
求正交矩阵Q,将实对称矩阵A=化为对角矩阵.
求正交矩阵Q,将实对称矩阵A=化为对角矩阵.
admin
2016-11-03
18
问题
求正交矩阵Q,将实对称矩阵A=
化为对角矩阵.
选项
答案
方法一 因A的特征多项式为 |λE一A|=(λ一2)
2
(λ一8), 故A的特征值为λ
1
=λ
2
=2,λ
3
=8. 现分别求出属于它们的线性无关的特征向量. 当λ
1
=λ
2
=2时,解(2E一A)X=0.由 [*] 得到属于λ
1
=λ
2
=2的线性无关的特征向量为 α
1
=[一1,1,0]
T
,α
2
=[一1,0,1]
T
. 用施密特方法将α
1
与α
2
正交化,为此令β
1
=α
1
=[一1,1,0]
T
,则 β
2
=α
2
[*] 于是β
1
,β
2
为相互正交的特征向量. 当λ
3
=8时,解(8E-A)X=0.因 [*] 由基础解系的简便求法知,属于λ=8的特征向量为 α
3
=[1,1,1]
T
. 将β
1
,β
2
,α
3
单位化分别得到 [*] 则所求的正交矩阵 Q=[η
1
,η
2
,η
3
]=[*] 方法二 因A有二重特征值λ
1
=λ
2
=2,可用基础解系正交化的方法求出正交矩阵. 已知α
1
=[一1,1,0]
T
为属于λ
1
=2的一个特征向量.设属于λ
1
=2的另一特征向量为[x
1
,x
2
,x
3
]
T
=X.下求X使之与α
1
正交. 因X为λ
1
=2的另一特征向量,故必满足系数矩阵为①的方程,即 [*] 故 x
1
+x
2
+x
3
=0. ② 又X与α
1
正交,有X
T
α
1
=0,即 一x
1
+x
2
=0. ③ 联立式②、式③得到 [*] 故 X=[一1/2,一1/2,1]
T
, 则α
1
,X,α
3
为两两正交的向量组,将其单位化得到 [*] 于是所求的正交矩阵为 Q=[η
1
,η
2
,η
3
]=[*]
解析
一般用施密特正交化的方法求出正交矩阵Q,使Q
-1
AQ为对角矩阵.但如A的特征值中含有一个二重特征值,也可不必用施密特正交化的方法,而用基础解系正交化的方法求出正交矩阵Q,使Q
-1
AQ为对角阵.
其一般步骤是先求出二次型矩阵的特征值、特征向量,将属于同一特征值的线性无关的特征向量正交化,再将所有特征向量单位化,使这些正交单位特征向量为列向量所构成的矩阵即为所求的正交矩阵,它也是正交变换的变换矩阵.
转载请注明原文地址:https://kaotiyun.com/show/cTu4777K
0
考研数学一
相关试题推荐
设f(x)可导,求下列函数的导数:
设n阶矩阵A的元素全为1,则A的n个特征值是________.
差分方程yt+1-yt=t2t的通解为_______.
设A是m×n矩阵,B是,n×m矩阵,则
商店收进甲厂生产的产品30箱,乙厂生产的同种产品20箱,甲厂产品每箱装100个,废品率为0.06,乙厂产品每箱120个,废品率为0.05.任取一箱,从中任取一个产品,求其为废品的概率
设A为n阶实对称矩阵,秩(A)=n,Aij是A=(aij)nxm中元素aij(i,j=1,2,…,n)的代数余子式,二次型f(x1,x2…,xn)=(I)记X=(x1,x2,…,xn)T,把f(x1,x2,…,xn)写成矩阵形式,并证明二次型f(x)
设f(x)是连续函数,则=__________.
设f(x,y)是连续函数,则
设平面曲线L上一点M处的曲率半径为ρ,曲率中心为A,AM为L在点M处的法线,法线上的两点P,Q分别位于L的两侧,其中P在AM上,Q在AM的延长线AN上,若P,Q满足|AP|.|AQ|=ρ2,称P,Q关于L对称.设L:,P点的坐标为.
计算曲面积分I=,其中∑是曲面2x2+2y2+z2=4的外侧.
随机试题
ActionshouldbetakentoimprovethelifeofAfricanpeople______(regard)ofcolororrace.
色氨酸的调节方式为
下述哪些项是耐酸陶瓷砖的优点?()
财务报表系统中,下列关于自本表本页取数的函数,正确的有()。
家庭美德的内容中,()是我国的基本国策,也是我国重要的法律原则和道德规范。
将一枚均匀的骰子投掷三次,记事件A表示“第一次出现偶数点”,事件B表示“第二次出现奇数点”,事件C表示“偶数点最多出现一次”,则
Common-coldSenseYoucan’tbeatit,butyoudon’thavetojoinit.Maybeitgotthename"commoncold"becauseit’smoreco
Thedoctorsaidtohim,"Justacold__________"
WhenshouldthemancheckwithStudentServicestoensurethechangeofregistrationdate?
【S1】【S6】
最新回复
(
0
)