首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设二次型f(x1,x2,x3)=XTAX=ax12+222+(-232)+2bx32 (b>0),其中二次矩阵A的特征值之和为1,特征值之积为-12. (Ⅰ)求a,b的值; (Ⅱ)利用正交变换将二次型f化为标准形,并写出所用的正交变换
设二次型f(x1,x2,x3)=XTAX=ax12+222+(-232)+2bx32 (b>0),其中二次矩阵A的特征值之和为1,特征值之积为-12. (Ⅰ)求a,b的值; (Ⅱ)利用正交变换将二次型f化为标准形,并写出所用的正交变换
admin
2013-08-30
100
问题
设二次型f(x
1
,x
2
,x
3
)=X
T
AX=ax
1
2
+2
2
2
+(-2
3
2
)+2bx
3
2
(b>0),其中二次矩阵A的特征值之和为1,特征值之积为-12.
(Ⅰ)求a,b的值;
(Ⅱ)利用正交变换将二次型f化为标准形,并写出所用的正交变换对应的正交矩阵.
选项
答案
(Ⅰ)由题设,二次型f相应的矩阵为A=[*] 设A的3个特征值为λ
1
,λ
2
,λ
3
,则由已知条件知λ
1
+λ
2
+λ
3
=1,λ
1
λ
2
λ
3
=-12;利用“矩阵特征值之和=矩阵主对角线元素之和”及“特征值之积=矩阵行列式”两个关系,得 [*],可求出b=2,即a=1,b=2. (Ⅱ)由|A-λE|=0,即[*],可求出A的特征值为 λ
1
=λ
2
=2,λ
3
=-3.不难求得对应于λ
1
=λ
2
=2的特征向量为ξ
1
=[*] 对应于λ
3
=-3的特征向量为ξ
3
=[*],对λ
1
,λ
2
,λ
3
正交规范化,得 [*] 令矩阵P=(ξ
1
,ξ
2
,ξ
3
)=[*] 则P为正交矩阵,在正交变换x=Py下,其中y=[*] 因此二次型的标准形为2y
1
2
+2y
2
2
-3y
3
2
.
解析
转载请注明原文地址:https://kaotiyun.com/show/sD54777K
0
考研数学一
相关试题推荐
[*]
如图,连续函数y=f(x)在区间[-3,-2],[2,3]上的图形分别是直径为1的上、下半圆周,在区间[-2,0],[0,2]的图形分别是直径为2的下、上半圆周,设F(x)=∫0xf(t)dt,则下列结论正确的是()
(2010年)设函数z=z(χ,y)由方程F()=0确定,其中F为可微函数,且F′2≠0,则【】
已知实二次型f(x1,x2,x3)=xTAx的矩阵A满足tr(A)=-6.AB=C,其中指出方程f(x1,x2,x3)=1表示何种曲面;
设矩阵求矩阵P,使(AP)T(AP)为对角矩阵.
确定常数a使向量组α1=(1,1,a)T,α2=(1,a,1)T,α3=(0,1,1)T可由向量组β1=(1,1,a)T,β2=(-2,a,4)T,β3=(-2,a,a)T线性表示,但向量组β1,β2,β3不能由向量组α1,α2,α3线性表示.
试证当x>0时,(x2-1)lnx≥(x-1)2.
设在区间[0,2]上,|f(x)|≤1,|f”(x)|≤1.证明:对于任意的x∈[0,2],有|f’(x)|≤2.
设f(x,y)与G(x,y)均为可微函数,且G’y(x,y)≠0.已知(x0,y0)是f(x,y)在约束条件G(x,y)=0下的一个极值点,下列选项正确的是().
设x的概率密度为f(x)=,F(x)是x的分布函数,求Y=F(x)的分布函数和概率密度。
随机试题
中枢免疫器官由胸腺、骨髓和淋巴结组成,是免疫细胞发生、增殖、分化、成熟的场所。
王某,经产妇,昨日经阴道顺产一正常男婴。目前主诉乳房胀痛,下腹阵发性轻微疼痛。查体:乳房胀痛,无红肿;子宫硬,宫底在腹部正中,脐下2指;阴道出血同月经量。该孕妇乳房胀痛首选的护理措施是
水闸闸室止水缝部位混凝土浇筑,正确的做法是()。
对于长期借款企业来讲,若预测市场利率将上升,应与银行签订固定利率合同;反之,则应签订浮动利率合同。()
下列关于对称与不对称说法正确的有()。
影响销售渠道选择的因素有()。
下列哪两个国家是第二次工业革命的发源地和“中心”?
Ifyou’relookingforacreativesolutiontosomeproblematwork,don’tretreatintoachamberofsolitudetoponderyourdilem
阅读以下说明,回答问题1至问题5。【说明】某企业的网络安装防火墙后其拓扑结构如图4-1所示。
Somethingweirdishappeningintheoncemarginalworldofenvironmentalism.Thegreencauseisnolongerth9preserveofwoolly
最新回复
(
0
)