首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设λ1、λ2分别为n阶实对称矩阵A的最小和最大特征值,X1、X2分别为对应于λ1和λn的特征向量,记 f(X)=,X∈R2,X≠0 证明:λ1≤f(X)≤λn,minf(X)=λ1=f(X1),maxf(X)=λn=f(Xn).
设λ1、λ2分别为n阶实对称矩阵A的最小和最大特征值,X1、X2分别为对应于λ1和λn的特征向量,记 f(X)=,X∈R2,X≠0 证明:λ1≤f(X)≤λn,minf(X)=λ1=f(X1),maxf(X)=λn=f(Xn).
admin
2016-04-11
45
问题
设λ
1
、λ
2
分别为n阶实对称矩阵A的最小和最大特征值,X
1
、X
2
分别为对应于λ
1
和λ
n
的特征向量,记
f(X)=
,X∈R
2
,X≠0
证明:λ
1
≤f(X)≤λ
n
,minf(X)=λ
1
=f(X
1
),maxf(X)=λ
n
=f(X
n
).
选项
答案
只证最大值的情形(最小值情形的证明类似):必存在正交变换X=PY(P为正交矩阵,Y=(y
1
,…,y
n
)
T
),使得X
T
AX[*]λ
1
y
1
2
+…+λ
n
y
n
T
≤λ
n
(y
1
T
+…+y
n
T
)=λ
n
‖y‖
2
,由于正交变换不改变向量长度,故有‖Y‖=‖X‖=X
T
X,上式即X
T
AX≤λ
n
X
T
X,当X≠0时,X
T
X>0,即得f(X)=[*]=λ
n
,于是得maxf(X)=λ
n
.
解析
转载请注明原文地址:https://kaotiyun.com/show/cVw4777K
0
考研数学一
相关试题推荐
设f(x)在(-1,1)内二阶连续可导,且f"(x)≠0,证明:
设f(x)在[a,b]上连续可导,且f(a)=0,证明:∫abf2(x)dx≤∫ab[f’(x)]2dx.
设f(x)在(-∞,+∞)上有定义,且对任意的x,y∈(-∞,+∞)有|f(x)-f(y)|≤|x-y|,证明:|∫abf(x)dx-(b-a)f(a)|≤(b-a)2.
设f(x)为连续函数,且满足∫01f(xt)dt=f(x)+xsinx,则f(x)=________.
设函数f(x)连续,且f’(0)>0,则存在δ>0使得()。
设,3阶矩阵B的秩为2,且r(AB)=1,则齐次方程组A*x=0的线性无关解的个数为()
设f(x)=|sinx|在[0,(2n-1)π](n≥1)上与x轴所围区域绕y轴旋转一周所得旋转体的体积为Vn,求
设y1(χ),y2(χ)是微分方程y〞+py′+qy=0的解,则由y1(χ),y2(χ)能构成方程通解的充分条件是().
设A=,其中a<0,方程组Ax=0有非零解,A*是A的伴随矩阵,则方程组A*x=0的基础解系为()
一质量为m的飞机,着陆时的水平速度为v0,经测试,减速伞打开后,飞机所受的总阻力与飞机的速度成正比(比例系数为k>0).问从着陆点算起,飞机滑行的最长距离是多少?
随机试题
内囊
需要在死刑临场监督笔录上签名的有()
企业可以根据具体情况来设计“收款单”或“收据”,设计的联次一定没有
反映现金收入和支出情况的序时账簿是指()
A.由县以上人民政府卫生行政部门吊销其执业证书B.由县以上人民政府卫生行政部门给予警告或者责令暂停六个月以上一年以下执业活动C.依照法律或者国家有关规定处理D.由县以上人民政府卫生行政部门予以取缔,没收其违法所得及其药品、器械,并处以十万元以下
经过风险分析,确定了项目中存在的风险以及这些风险发生的可能性,确定了这些风险对项目的影响和可探测度,并排出了风险的优先级,在此之后就可以根据风险性质和项目对风险的承受能力制定相应的防范计划,即()。
水电建设工程质量监督总站负责水电建设工程的质量监督归口管理工作,其主要职责包括()。
人们生活中经常接触的塑料实质上是一种()。
下列对人的本质的理解,错误的是()。
ForumfortheFuture,workingwithTescoandUnilever,reckonthatby2022whatwebuy,howwebuyitandwhofromwillhavechange
最新回复
(
0
)