首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)在[0,3]上连续,在(0,3)内可导,且f(1)+2f(2)+3f(3)=6,试证必存在ξ(0,3),使得f’(ξ)=0.
设函数f(x)在[0,3]上连续,在(0,3)内可导,且f(1)+2f(2)+3f(3)=6,试证必存在ξ(0,3),使得f’(ξ)=0.
admin
2020-03-16
33
问题
设函数f(x)在[0,3]上连续,在(0,3)内可导,且f(1)+2f(2)+3f(3)=6,
试证必存在ξ(0,3),使得f’(ξ)=0.
选项
答案
由[*]=1知f(0)=1.由f(1)+2f(2)+3(3)=6及连续函数介值定理知,存在c∈(1,3),使f(c)=1,然后在[0,c]上对f(x)用罗尔定理.
解析
转载请注明原文地址:https://kaotiyun.com/show/cb84777K
0
考研数学二
相关试题推荐
已知A为n(n≥3)阶非零实矩阵,Aij为A中元素aij的代数余子式,证明:aij=一AijATA=E,且|A|=一1。
设α1,α2,…,αm,β1,β2,…,βn线性无关,而向量组α1,α2…,αm,γ线性相关.证明:向量γ可由向量组α1,α2,…,αm,β1,β2,…,βn线性表示.
求曲线y=x2-2x,y=0,x=1,x=3所围成的平面图形的面积S,并求该平面图形绕y轴旋转一周所得旋转体的体积V.
已知A是三阶实对称矩阵,满足A4+2A3+A2+2A=O,且秩r(A)=2,求矩阵A的全部特征值,并求秩r(A+E)。
设曲线=1(0
求下列函数f(χ)在χ=0处带拉格朗日余项的n阶泰勒公式:(Ⅰ)f(χ)=;(Ⅱ)f(χ)=eχsinχ.
设f(x),g(x)在[a,b]上连续,且g(x)>0.利用闭区间上连续函数的性质,证明:存在一点ξ∈[a,b],使∫abf(x)g(x)=f(ξ)∫abg(x)dx.
生产x单位某种商品的利润是x的函数:L(x)=5000+x-0.00001x2问生产多少单位时获得的利润最大?
[2005年]确定常数a,使向量组α1=[1,1,a]T,α2=[1,a,1]T,α3=[a,1,1]T可由向量组β1=[1,1,a]T,β2=[一2,a,4]T,β3=[一2,a,a]T线性表示,但向量组β1,β2,β3不能由向量组α1,α2,α3线
随机试题
量、本、利分析法:
学校体育的根本任务是()
A.地机B.阴郄C.郄门D.孔最手太阴肺经郄穴
下述热源中可以熔化高熔合金的是
系统性红斑狼疮何系统损害提示病重预后差
甲为显示自己是本地“人们惹不起的人”,一日装作喝醉酒,在附近街道上开车横冲直撞制造事端,拦截、辱骂、殴打本地多人,其中致一人重伤,一人死亡。则()。
采取诉讼财产保全须符合的条件不包括( )。
Sincemanydisadvantagedindividualsviewtheirsituationsasimmutableaswellasintolerable,theirattitudesarebestdescrib
Physicistsaren’toftenreprimandedforusingrisquehumorintheiracademicwritings,butin1991thatisexactlywhathappened
A、Inacoupleofdays.B、Rightaway.C、Intwomonths.D、Earlynextmonth.DQ:Whencanthewomanstarttoworkifshegetsthejo
最新回复
(
0
)