首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
求函数f(x,y)=x3-y3+3x2+3y2-9x的极值。
求函数f(x,y)=x3-y3+3x2+3y2-9x的极值。
admin
2018-12-27
27
问题
求函数f(x,y)=x
3
-y
3
+3x
2
+3y
2
-9x的极值。
选项
答案
由已知得,f
x
’(x,y)=3x
2
+6x-9,f
y
’(x,y)=-3y
2
+6y。 令[*]得到[*]进而得到驻点为M
1
(1,0),M
2
(1,2),M
3
(-3,0),M
4
(-3,2)。 又f
xx
"(x,y)=6x+6,f
xy
"(x,y)=0,f
yy
"(x,y)=-6y+6。 在点M
1
(1,0)处,A=12,B=0,C=6。则AC-B
2
=72>0且A>0,故f(1,0)=-5为极小值; 在点M
2
(1,2)处,A=12,B=0,C=-6。则AC—B
2
=-72<0,故f(1,2)不是极值; 在点M
3
(-3,0)处,A=-12,B=0,C=6 0则AC-B
2
=-72<0,故f(-3,0)不是极值; 在点M
4
(-3,2)处,A=-12,B=0,C=-6。则AC-B
2
=72>0且A<0,故f(-3,2)=31 为极大值。
解析
转载请注明原文地址:https://kaotiyun.com/show/chM4777K
0
考研数学一
相关试题推荐
设α1,…,αn-1,β1,β2均为n维实向量,α1,…,αn-1线性无关,且βj(j=1,2)与α1.….αn-1均正交.证明:β1与β2线性相关.
设α1,α2,α3是4元非齐次线性方程组Ax=b的3个解向量,且秩(A)=3,α1=(1,2,3,4)T,α2+α3=(0,1,2,3)T,c表示任意常数,则线性方程组Ax=b的通解x=
甲袋中有2个白球,乙袋中有2个黑球,每次从各袋中分别任取一球交换后放人对方袋中,共交换3次.用X表示3次交换后甲袋中的白球数,求X的分布列.
设A为n阶非零矩阵,存在某正整数m,使Am=O,求A的特征值,并证明A不与对角阵相似.
设齐次线性方程组Am×nx=0的解全是方程b1x1+b2x2+-…+bnxn=0的解,其中x=(x1,x2,…,xn)T.证明:向量b=(b1,b2,…,bn)可由A的行向量组线性表出.
设X~U(0,1)且X与Y独立同分布,求的分布函数(U(0,1)表示区间(0,1)上的均匀分布)F(u).
(97年)从学校乘汽车到火车站的途中有3个交通岗,假设在各个交通岗遇到红灯的事件是相互独立的,并且概率都是.设X为途中遇到红灯的次数,求随机变量X的分布律、分布函数和数学期望.
(03年)已知一批零件的长度X(单位:cm)服从正态分布N(μ,1),从中随机地抽取16个零件,得到长度的平均值为40cm,则μ的置信度为0.95的置信区间是__________.(注:标准正态分布函数值φ(1.96)=0.975,φ(1.645)=0
(05年)如图,曲线C的方程为y=f(x),点(3,2)是它的一个拐点,直线l1与l2分别是由线C在点(0,0)与(3,2)处的切线,其交点为(2,4).设函数f(x)具有三阶连续导数,计算定积分∫03(x2+x)f"’(x)dx.
设f(x,y)为连续函数,且f(x,y)=xy+f(u,v)dudv,其中D是由直线y=0,x=1与曲线y=x2围成的平面区域,则f(x,y)dxdy=_________.
随机试题
以“只要数a是偶数,那么数a就能被b整除”为前提,加上另一个前提:“数a能被b整除”,能否必然得出结论?为什么?
Theschoolteachersarerequiredto______themarkedexaminationpapersintopassesandfailures.
各类休克共同的病理生理改变是
数控机床中的半闭环伺服系统与闭环伺服系统在结构上的主要区别是:()。
商业银行发行资本性债券筹资的优点有()。
商业银行资产业务包括()。
2012年1~4月份,民间固定资产投资46869亿元,比上年同期增长27.3%.增速较1~3月份回落1.6个百分点,比同期固定资产投资(不含农户)增速高7.1个百分点。民间固定资产投资占固定资产投资的比重为62%,比1~3月份提高0.1个百分点。
自定义的异常类可从下列()类继承。
Thebesttitleforthispassageis______.Thepilotshipprovedthattheexperimentwasfeasible;however,itdidnotduplicate
A、Fridgeandstereosystem.B、Watches.C、CDandbooks.D、Television.D细节题。男士提到电视太旧了,不值得投保。
最新回复
(
0
)