首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
问λ取何值时,齐次线性方程组 有非零解.
问λ取何值时,齐次线性方程组 有非零解.
admin
2016-05-31
46
问题
问λ取何值时,齐次线性方程组
有非零解.
选项
答案
方程组的系数矩阵 [*] =(1-λ)
2
(3-λ)-2+8-4(3-λ)-(1-λ)+4(1-λ) =(1-λ)
2
(3-λ)-(3-λ)=(3-λ)[(1-λ)
2
-1] =λ(3-λ)(λ-2). 要使齐次线性方程组有非零解,则D=0,得λ=0或λ=2或λ=3.将λ的值分别代人原方程组并求解. 当λ=0时,方程组的解为[*] 当λ=2时,方程组的解为[*] 当λ=3时,方程组的解为[*] 以上解均是非零解,所以当λ=0或λ=2或λ=3时,该齐次线性方程组有非零解.
解析
转载请注明原文地址:https://kaotiyun.com/show/chT4777K
0
考研数学三
相关试题推荐
材料1 北京大学援鄂医疗队全体“90后”党员: 来信收悉。在新冠肺炎疫情防控斗争中,你们青年人同在一线英勇奋战的广大疫情防控人员一道,不畏艰险、冲锋在前、舍生忘死,彰显了青春的蓬勃力量,交出了合格答卷。广大青年用行动证明,新时代的中国青年是好样的,
设β,α1,α2线性相关,β,α2,α3线性无关,则().
设A,B是同阶正定矩阵,则下列命题错误的是().
问a,b为何值时,下列函数在其定义域内的每点处连续:
化下列方程为齐次型方程,并求出通解:(1)(2y-x-5)dx-(2x-y+4)dy=0;(2)(2x-5y+3)dx-(2x+4y-6)dy=0;(3)(x+y)dx+(3x+3y-4)dy=0;(4)(y-x+1)dx-(y+x+5)dy=0.
设A为n阶实矩阵,AT为A的转置矩阵,则对于线性方程组(I)AX=0和(Ⅱ)ATAx=0必有().
求:微分方程y〞+y=-2x的通解.
设齐次线性方程组Ax=0和Bx=0,其中A,B均为m×n矩阵,现有4个命题:①若Ax=0的解均足Bx=0的解,则秩(A)≥秩(B);②若秩(A)≥秩(B),则Ax=0的解均是Bx=0的解;③符Ax=0与Bx=0同解,则秩(A)
设3阶矩阵A的特征值为2,3,λ.若行列式|2A|=-48,则λ=________.
随机试题
某企业的一个成本中心生产某产品,预算产量为1000件,单位成本80元;实际产量1200件,单位成本75元,则该成本中心的成本变动率为【】
《素问.五藏生成篇》说:“诸气者,皆属于”
对于抵押物的存货估价,应当是评估存货的()。
某市为合理用电,鼓励各用户安装“峰谷”电表。该市原电价为每度0.53元,改装新电表后,每天晚上10点至次日早上8点为“低谷”,每度收取0.28元,其余时间为“高峰”。每度收取0.56元。为改装新电表每个用户须收取100元改装费。假定某用户每月用200度电,
9月初大学人学报到时,有多家手机运营商到某大学校园进行产品销售宣传。有好几家运营商推出了免费套餐服务。但是其中一家运营商推出了价格优惠的套餐,同时其业务员向学生宣传说:其他运营商所谓的“免费”套餐是通过出售消费者的身份信息来获得运营费用的。以下哪项如果为
简述影响人格形成的因素。
军官:上校
国家安全问题事关国家安危和民族存亡。在国家安全形势越来越复杂的今天,大学生要增强国家安全意识,对境内外敌对势力的渗透、颠覆、破坏活动保持高度警惕,切实履行维护国家安全的义务。国家安全一般是指一个国家不受内部和外部的威胁、破坏而保持稳定有序的状态。当前,我国
Whatisthepurposeoftheannouncement?
A、Rearrangeitsplace.B、Returnittothestore.C、Sellittoher.D、Giveittohisfriend.B女士对该电视机的看法与男士不同,因此当男士询问是否应将新电视机退掉时,
最新回复
(
0
)