首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设a0,a1,an-1为n个实数,方阵 (1)若λ是A是一个特征值,证明α=[1,λ,λ2,…,λn-1]T是A的对应于λ的特征向量; (2)若A的特征值两两互异,求一可逆矩阵P,使得P-1AP为对角矩阵.
设a0,a1,an-1为n个实数,方阵 (1)若λ是A是一个特征值,证明α=[1,λ,λ2,…,λn-1]T是A的对应于λ的特征向量; (2)若A的特征值两两互异,求一可逆矩阵P,使得P-1AP为对角矩阵.
admin
2018-09-20
77
问题
设a
0
,a
1
,a
n-1
为n个实数,方阵
(1)若λ是A是一个特征值,证明α=[1,λ,λ
2
,…,λ
n-1
]
T
是A的对应于λ的特征向量;
(2)若A的特征值两两互异,求一可逆矩阵P,使得P
-1
AP为对角矩阵.
选项
答案
(1)A的特征多项式 [*] =λ
n
+a
n-1
λ
n-1
+…+a
1
λ+a
0
,因λ是A的特征值,故 |λE一A|=λ
n
+a
n-1
λ
n-1
+…+a
1
λ+a
0
=0, 于是得到 λ
n
=一(a
n-1
λ
n-1
+…+a
1
λ+a
0
), 所以 [*] 因而,α=[1,λ,λ
2
,…,λ
n-1
]
T
是A的对应于λ的特征向量,故α
i
=[1,λ
i
,λ
i
2
,…,λ
i
n-1
]
T
是A的对应 于λ
i
(i=1,2,…,n)的特征向量. (2)由于A的特征值λ
1
,λ
2
,…,λ
n
两两互异,故依次对应的特征向量α
1
,α
2
,…,α
n
线性无 关,因为Aα
i
=λ
i
α
i
(i=1,2,…,n),令P=[α
1
,α
2
,…,α
n
],则有 [*] 从而P即为所求.
解析
转载请注明原文地址:https://kaotiyun.com/show/ckW4777K
0
考研数学三
相关试题推荐
设向量组α1,α2,…,αs为齐次线性方程组AX=0的一个基础解系,Aβ≠0.证明:齐次线性方程组BY=0只有零解,其中B=(β,β+α1,…,β+αs).
设若ai=a3=a≠0,a2=a4=一a,求ATX=b的通解.
设方程组α3=为矩阵A的分别属于特征值λ1=1,λ2=一2,λ3=一1的特征向量.(1)求A;(2)求|A*+3E|.
从正态总体X,N(0,σ2)中抽取简单随机样本X1,X2,…,Xn,则可作为参数σ2的无偏估计量的是().
设总体X的分布律为P(X=k(1一p)k一1p(k=1,2,…),其中p是未知参数,X1,X2,…,Xn为来自总体的简单随机样本,求参数p的矩估计量和极大似然估计量.
设α1,α2,β1,β2为三维列向量组,且α1,α2与β1,β2都线性无关.证明:设α1=求出可由两组向量同时线性表示的向量.
设A为m×n阶矩阵,则方程组AX=b有唯一解的充分必要条件是().
设A为n阶矩阵,A11≠0.证明:非齐次线性方程组AX=b有无穷多个解的充分必要条件是A*b=0.
由曲线x2+(y一2a)2≤a2所围成平面图形绕x轴旋转得到的旋转体体积等于________.
假设随机变量X1,X2,X3,X4相互独立且都服从0—1分布:P{Xi=1}=p,P{Xi=0}=1—p(i=1,2,3,4,0<p<1),已知二阶行列式的值大于零的概率等于,则p=________。
随机试题
使用烤灯时,距离治疗部位的距离为()
循行于“乳中线”的经脉是
按照《证券投资基金管理办法》的规定,封闭式基金的收益分配每年不得少于一次,封闭式基金年度收益分配比例不得低于基金年度已实现收益的()。
银行在进行市场定位时应考虑全局战略目标,并且银行的定位应该略高于银行自身能力与市场需求的对称点,这是指银行市场定位的()原则。
货币乘数指在货币供给过程中,中央银行的初始货币提供量与______之间的扩张倍数。
《物业管理条例》明确规定,业主大会做出专项维修资金使用和续筹方案的决定,必须经物业管理区域内全体业主所持投票权()以上通过。
某地发生一起抢劫案,公民当即将罪犯扭送到当地人民法院,该人民法院应当如何处理?()
马列主义、毛泽东思想、邓小平理论、“三个代表”重要思想
设D是由x轴,y轴,x=1,y=2所围成的闭区域,且1≤f(x,y)≤3,则I=f(x,y)dxdy的估值区间为_________.
求
最新回复
(
0
)