首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设a0,a1,an-1为n个实数,方阵 (1)若λ是A是一个特征值,证明α=[1,λ,λ2,…,λn-1]T是A的对应于λ的特征向量; (2)若A的特征值两两互异,求一可逆矩阵P,使得P-1AP为对角矩阵.
设a0,a1,an-1为n个实数,方阵 (1)若λ是A是一个特征值,证明α=[1,λ,λ2,…,λn-1]T是A的对应于λ的特征向量; (2)若A的特征值两两互异,求一可逆矩阵P,使得P-1AP为对角矩阵.
admin
2018-09-20
48
问题
设a
0
,a
1
,a
n-1
为n个实数,方阵
(1)若λ是A是一个特征值,证明α=[1,λ,λ
2
,…,λ
n-1
]
T
是A的对应于λ的特征向量;
(2)若A的特征值两两互异,求一可逆矩阵P,使得P
-1
AP为对角矩阵.
选项
答案
(1)A的特征多项式 [*] =λ
n
+a
n-1
λ
n-1
+…+a
1
λ+a
0
,因λ是A的特征值,故 |λE一A|=λ
n
+a
n-1
λ
n-1
+…+a
1
λ+a
0
=0, 于是得到 λ
n
=一(a
n-1
λ
n-1
+…+a
1
λ+a
0
), 所以 [*] 因而,α=[1,λ,λ
2
,…,λ
n-1
]
T
是A的对应于λ的特征向量,故α
i
=[1,λ
i
,λ
i
2
,…,λ
i
n-1
]
T
是A的对应 于λ
i
(i=1,2,…,n)的特征向量. (2)由于A的特征值λ
1
,λ
2
,…,λ
n
两两互异,故依次对应的特征向量α
1
,α
2
,…,α
n
线性无 关,因为Aα
i
=λ
i
α
i
(i=1,2,…,n),令P=[α
1
,α
2
,…,α
n
],则有 [*] 从而P即为所求.
解析
转载请注明原文地址:https://kaotiyun.com/show/ckW4777K
0
考研数学三
相关试题推荐
设A是3×4阶矩阵且r(A)=1,设(1,一2,1,2)T,(1,0,5,2)T,(一1,2,0,1)T,(2,一4,3,a+1)T皆为AX=0的解.求常数a;
设为A的特征向量.A可否对角化?若可对角化,求可逆矩阵P,使得P一1AP为对角矩阵.
设A,B为n阶矩阵,且r(A)+r(B)<n,证明:A,B有公共的特征向量.
设A,B为三阶矩阵,且AB=A一B,若λ1,λ2,λ3为A的三个不同的特征值,证明:AB=BA;
设X1,X2,…,Xn是来自总体X的简单随机样本,已知E(Xk)=αk(k=1,2,3,4).证明:当n充分大时,随机变量Zn=;近似服从正态分布,并指出其分布参数.
设f(x)在区间[a,b]上二阶可导且f"(x)≥0.证明:
设函数f(x)∈C[a,b],且f(x)>0,D为区域a≤x≤b,a≤y≤b.证明:≥(b一a)2.
设f(x)在区间[a,b]上满足a≤f(x)≤b,且有|f’(x)|≤q<1,令un=f(un一1)(n=1,2,…),u0∈[a,b],证明:级数(un+1一un)绝对收敛.
设四元齐次线性方程组(1)为而已知另一四元齐次线性方程组(2)的一个基础解系为α1=(2,—1,a+2,1)T,α2=(—1,2,4,a+8)T(Ⅰ)求方程组(1)的一个基础解系;(Ⅱ)当a为何值时,方程组(1)与(2)有非零公共解?并求出所有非
设函数f(u)可微,且f’(0)=,则z=分(4x2一y2)在点(1,2)处的全微分dz|(1,2)=________。
随机试题
慢性房颤最常见的并发症为
A、不致出现过敏现象B、柔软、滑润,无板硬、黏着不适感C、不会刺激皮肤引起皮炎D、能使疮口早日愈合E、富有黏性,能固定患部,使患部减少活动使用油膏的主要优点有
企业进行会计数字比较的方式包括()。
以下关于生活常识,说法不正确的是()。
旅游行业核心价值观中的“游客为本”与“服务至诚”之间是()的关系。
社会工作者小陈负责“关爱社区失独老人”服务项目,为了完成项目的各项工作,他招募了一批护理、法律等方面的志愿者参与到项目中,下列为这些志愿者准备的培训内容,符合要求的是()
国务院全体会议由国务院总理、副总理、各部部长、各委员会主任、审计长、秘书长和()组成。
近年来,伯来鸟的数量急剧减少,这种肉食鸟一般栖息于平原,如农场或牧场。一些鸟类学家认为这是由于一种新型杀虫剂导致伯来鸟赖以为食的昆虫急剧减少的结果。以下哪项中提出来的问题最不能帮助我们重新判断上述推理是否有效?
Thefollowingisamenuofamobile(移动的)phone.Afterreadingit,youarerequiredtofindtheitemsequivalentto(与......等同)th
Thetendencynowadaystowanderinwildernessesisdelightfultosee.Thousandsoftired,nerve-shaking,over-civilizedpeoplea
最新回复
(
0
)