首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设a0,a1,an-1为n个实数,方阵 (1)若λ是A是一个特征值,证明α=[1,λ,λ2,…,λn-1]T是A的对应于λ的特征向量; (2)若A的特征值两两互异,求一可逆矩阵P,使得P-1AP为对角矩阵.
设a0,a1,an-1为n个实数,方阵 (1)若λ是A是一个特征值,证明α=[1,λ,λ2,…,λn-1]T是A的对应于λ的特征向量; (2)若A的特征值两两互异,求一可逆矩阵P,使得P-1AP为对角矩阵.
admin
2018-09-20
68
问题
设a
0
,a
1
,a
n-1
为n个实数,方阵
(1)若λ是A是一个特征值,证明α=[1,λ,λ
2
,…,λ
n-1
]
T
是A的对应于λ的特征向量;
(2)若A的特征值两两互异,求一可逆矩阵P,使得P
-1
AP为对角矩阵.
选项
答案
(1)A的特征多项式 [*] =λ
n
+a
n-1
λ
n-1
+…+a
1
λ+a
0
,因λ是A的特征值,故 |λE一A|=λ
n
+a
n-1
λ
n-1
+…+a
1
λ+a
0
=0, 于是得到 λ
n
=一(a
n-1
λ
n-1
+…+a
1
λ+a
0
), 所以 [*] 因而,α=[1,λ,λ
2
,…,λ
n-1
]
T
是A的对应于λ的特征向量,故α
i
=[1,λ
i
,λ
i
2
,…,λ
i
n-1
]
T
是A的对应 于λ
i
(i=1,2,…,n)的特征向量. (2)由于A的特征值λ
1
,λ
2
,…,λ
n
两两互异,故依次对应的特征向量α
1
,α
2
,…,α
n
线性无 关,因为Aα
i
=λ
i
α
i
(i=1,2,…,n),令P=[α
1
,α
2
,…,α
n
],则有 [*] 从而P即为所求.
解析
转载请注明原文地址:https://kaotiyun.com/show/ckW4777K
0
考研数学三
相关试题推荐
设α1,α2,α3,α4为四维非零列向量组,令A=(α1,α2,α3,α4),Ax=0的通解为X=k(0,一1,3,0)T,则A*X=0的基础解系为().
设α,β为三维非零列向量,(α,β)=3,A=αβT,则A的特征值为________.
设点A(1,0,0),B(0,1,1),线段AB绕z轴一周所得旋转曲面为S.求旋转曲面的方程;
计算二重积分(x2+4x+y2)dxdy,其中D是曲线(x2+y2)2=az(x2一y2)围成的区域.
设函数f(x)可导且0≤f’(x)≤(k>0),对任意的x0,作xn+1=f(xn)(n=0,1,2,…),证明:存在且满足方程f(x)=x.
设函数f(x)(x≥0)可微,且f(x)>0.将曲线y=f(x),x=1,x=a(a>1)及x轴所围成平面图形绕x轴旋转一周得旋转体体积为[a2f(a)一f(1)].若f(1)=,求:f(x)的极值.
求由方程x2+y3一xy=0确定的函数在x>0内的极值,并指出是极大值还是极小值.
设f(x),g(x)在点x=0的某邻域内连续,且f(x)具有一阶连续导数,满足=0,f’(x)=一2x2+∫0xg(x一t)dt,则().
设z=f(x,y)在点(x0,y0)处可微,△z是f(x,y)在点(x0,y0)处的全增量,则在点(x0,y0)处()
随机试题
以下方法中,不能确定目前存在幽门螺杆菌感染的是
《莫利尔法案》是指1857年美国国会议员贾斯丁.莫利尔提出的一项通过赠地建立研究型大学的建议。()
急性胰腺炎的临床表现中,下列哪项是错误的
32岁妇女,因经期腹痛并逐渐加剧前来就诊。检查子宫后倾,粘连固定,子宫峡部后壁可触及多个小结节,触痛明显,右附件区增厚,在附件区触及直径约6cm的囊性粘连包块。最可能的诊断是
关于起诉与受理的表述,下列哪些选项是正确的?(2012年试卷三第79题)
法国学者费奈隆认为:“民众支配雅典,演说支配民众。”这句话表明他对古代雅典民主政治的看法是()。
简述学校德育的主要内容。
2013年9月27日,国务院批准《中国(上海)自由贸易试验区总体方案》,9月29日,“中国(上海)自由贸易试验区”和“中国(上海)自由贸易试验区管委会”挂牌,这标志着中国(上海)自由贸易试验区正式启动运作。自贸区建设将促进政府职能转变,积极探索管理模式创新
假设你用保证金从你的经纪人处以每股70美元购买了200股XYZ股票。如果初始保证金是55%,你从你的经纪人处借了多少钱?()
Today,mostcountriesintheworldhavecanals.Manycountrieshavebuiltcanalsnearthecoast,andparallel【C1】______thecoast
最新回复
(
0
)