首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)二阶连续可导,且f"(x)≠0,又f(x+h)=f(x)+f’(x+θh)h(0﹤θ﹤1).证明:.
设f(x)二阶连续可导,且f"(x)≠0,又f(x+h)=f(x)+f’(x+θh)h(0﹤θ﹤1).证明:.
admin
2019-09-23
71
问题
设f(x)二阶连续可导,且f"(x)≠0,又f(x+h)=f(x)+f’(x+θh)h(0﹤θ﹤1).证明:
.
选项
答案
由泰勒公式得 f(x+h)=f(x)+f’(x)h+[*],其中ε介于x与x+h之间, 由已知条件得f’(x+θh)h=f’(x)h+[*],或f’(x+θh)-f’(x)=[*], 两边同时除以h,得[*], [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/d1A4777K
0
考研数学二
相关试题推荐
A是3阶矩阵,有特征值λ1=λ2=2,对应两个线性无关的特征向量为ξ1,ξ2,ξ3=-2对应的特征向量是ξ3.(I)问ξ1﹢ξ2是否是A的特征向量?说明理由;(Ⅱ)问ξ2﹢ξ3是否是A的特征向量?说明理由;(Ⅲ)证明任意3维非零向量β都是A2的特征向
A为n(n≥3)阶非零实矩阵,Aij为|A|中元素aij的代数余子式,试证明:aij=AijATA=E且|A|=1;
设A是3×3矩阵,α1,α2,α3是三维列向量,且线性无关,已知Aα1=α2+α3,Aα2=α1+α3,Aα3=α1+α2.(1)证明:Aα1,Aα2,Aα3线性无关;(2)求|A|.
就k的不同取值情况,确定方程x3-3x+k=0根的个数.
求线性方程组的通解,并求满足条件x12=x22的所有解.
设f(χ)在[a,b]上连续,在(a,b)内可导,且f(a)f(b)>0,f(a)f()<0.证明:存在ξ∈(a,b),使得f′(ξ)=f(ξ).
求微分方程y"+2y’+y=xex的通解.
求函数的单调区间和极值,以及该函数图形的渐近线。
设函数z=f(x,y)在点(1,1)处可微,且f(1,1)=1,,ψ(x)=f[x,f(x,x)].求.
设f(x,y)=,试讨论f(x,y)在点(0,0)处的连续性,可偏导性和可微性.
随机试题
计算机以键盘为媒介的汉字输入方法很多,比较常用的输入方法有()两种。
胞浆中合成脂肪酸的限速酶是
炔诺酮每片含甲地孕酮每片含
在执业活动中不属于应当履行的义务是
在分部分项工程成本分析中,“三算”指的是()。
根据下列资料,回答下列问题。据海关统计,2014年,我国共出口铁路设备267.7亿元,比上年(下同)增长22.6%。统计显示,2014年我国铁路设备出口呈现五个特点:一是出口呈现快速增长态势。2014年,我国铁路设备出口整体呈现快速增长态势,其中,有9
下列机构中,属于社团法人的是()。
______isthestudyofthephysicalpropertiesofthesoundsproducedinspeech.
Theswitching-onceremonybecameincreasinglycompetitivebecause
Crimeisincreasingworldwide.Thereiseveryreasontobelievethe【B1】______willcontinuethroughthenextfewdecades.Crimer
最新回复
(
0
)