首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[a,b]上可导,f’(x)+[f(x)]2一∫axf(t)dt=0,且∫ab(t)dt=0,则∫ax(t)dt在(a,b)内必定
设f(x)在[a,b]上可导,f’(x)+[f(x)]2一∫axf(t)dt=0,且∫ab(t)dt=0,则∫ax(t)dt在(a,b)内必定
admin
2017-11-22
16
问题
设f(x)在[a,b]上可导,f’(x)+[f(x)]
2
一∫
a
x
f(t)dt=0,且∫
a
b
(t)dt=0,则∫
a
x
(t)dt在(a,b)内必定
选项
A、恒为正.
B、恒为负.
C、恒为零.
D、变号.
答案
C
解析
设F(x)=∫
a
x
(t)dt,若F(x)在(a,b)内可取正值,由于F(a)=F(b)=0,故F(x)在(a,b)内存在最大值且为正,从而知F(x)必在(a,b)内存在正的极大值,记该极大值点为x
0
,于是F’(x
0
)=0,F(x
0
)>0.即f(x
0
)=0,∫
a
x0
f(t)dt>0,代入原方程,得
F"(x
0
)=∫
a
x0
f(t)dt>0,这表明F(x
0
)应是极小值,导致矛盾.同理可知F(x)在(a,b)内也不可能取到负值,故选(C).
转载请注明原文地址:https://kaotiyun.com/show/d6X4777K
0
考研数学三
相关试题推荐
[*]则(Ⅱ)可写为BY=0,因为β1,β2,…,βn为(I)的基础解系,因此r(A)=n,β1,β2,…,βn线性无关,Aβ1=Aβ2=…=Aβn=0→A(β1,β2,…,βn)=O→ABT=O→BAT=0.→α1T,α2T,…,αnT为BY=0的一组
向量组α1,α2,…,αm线性无关的充分必要条件是().
下列命题正确的是().
设an>0(n一1,2,…)且{an}n=1∞单调减少,又级数的敛散性.
设y=y(x)二阶可导,且y’≠0,x=x(y)是y=y(x)的反函数.(1)将x=x(y)所满足的微分方程变换为y=y(x)所满足的微分方程;(2)求变换后的微分方程满足初始条件y(0)=0,y’(0)=的解.
设X1,X2,…,Xn是来自正态总体X~N(μ,σ2)的简单随机样本,记则服从t(n一1)分布的随机变量是().
当x→0时,f(x)=为x的三阶无穷小,则a,b分别为()
设A,B均为n阶矩阵,A有n个互不相同的特征值,且AB=BA.证明:B相似于对角阵.
求V(t)=((t一1)y+1)dxdy的最大值,其中Dt={(x,y)|x2+y2≤1,≤y≤1},2≤t≤3.
求二元函数z=f(x,y)=x2y(4一x—y)在由直线x+y=6,x轴和y轴所围成的闭区域D上的极值、最大值与最小值.
随机试题
子宫平滑肌兴奋药有:
0.9%NaCl溶液和10%葡萄糖溶液对人细胞内液来说
【2010年真题】为了提高工程项目风险识别的效率和规范性,同时可便于风险识别资料的积累,有必要建立()。
在下列有关可转让信用证的说明中,错误的说法是()。
某只债券在银行间债券市场交易流通终止的日期称为()。
企业的财务活动包括()。
利他行为的特征有()。
五十多年后回顾这段历史,杜老依然________,然而他也没有________土改实施过程中的缺陷,例如消灭富农和侵犯中农,以及没有严格依法保护劳动者财产利益。填入划横线部分最恰当的一项是()。
[2017年]差分方程yt+1-2yt=2t的通解为___________.
计算每名运动员的"得分"的正确SQL命令是( )。
最新回复
(
0
)