首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是秩为n-1的n阶矩阵,α1与α2是方程组Ax=0的两个不同的解向量,则Ax=0的通解必定是
设A是秩为n-1的n阶矩阵,α1与α2是方程组Ax=0的两个不同的解向量,则Ax=0的通解必定是
admin
2019-03-11
45
问题
设A是秩为n-1的n阶矩阵,α
1
与α
2
是方程组Ax=0的两个不同的解向量,则Ax=0的通解必定是
选项
A、α
1
+α
2
.
B、kα
1
.
C、k(α
1
+α
2
).
D、k(α
1
-α
2
).
答案
D
解析
因为通解中必有任意常数,显见(A)不正确.由n-r(A)=1知Ax=0的基础解系由一个非零向量构成.α
1
,α
1
+α
2
与α
1
-α
2
中哪一个一定是非零向量呢?
已知条件只是说α
1
,α
2
是两个不同的解,那么α
1
可以是零解,因而kα
1
可能不是通解.如果α
1
=-α
2
≠0,则α
1
,α
2
是两个不同的解,但α
1
+α
2
=0两个不同的解不能保证α
1
+α
2
≠0.因此要排除(B)、(C).由于α
1
≠α
2
,必有α
1
-α
2
≠0.可见(D)正确.
转载请注明原文地址:https://kaotiyun.com/show/dCP4777K
0
考研数学三
相关试题推荐
设A为3阶矩阵,α1,α2,α3是线性无关的3维列向量,且满足Aα1=α1+α2+α3,Aα2=2α2+α3,Aα3=2α2+3α3.(Ⅰ)求矩阵A的特征值;(Ⅱ)求可逆矩阵P使P-1AP=A.
将f(x,y)dσ化为累次积分,其中D为x2+y2≤2ax与x2+y2≤2ay的公共部分(a>0).
设函数z=f(x,y)在点(x0,y0)的某邻域内有定义,且在点(x0,y0)处的两个偏导数f’x(x0,y0),f’y(x0,y0)都存在,则
求下列定积分:(Ⅰ)I=∫02π;(Ⅱ)In,m=∫02πsinnxcosmxdx,其中自然数n或m为奇数。
设曲线方程为y=e—x(x≥0).(Ⅰ)把曲线y=e—x,x轴,y轴和直线x=ξ(ξ>0)所围平面图形绕x轴旋转一周得一旋转体,求此旋转体的体积V(ξ);并求满足V(a)=V(ξ)的a值;(Ⅱ)在此曲线上找一点,使过该点的切线与两个坐标
(Ⅰ)设X与Y相互独立,且X~N(5,15),Y~χ2(5),求概率P{X一5>};(Ⅱ)设总体X~N(2.5,62),X1,X2,X3,X4,X5是来自X的简单随机样本,求概率P{(1.3<<3.5)∩(6.3<S2<9.6)}.
设X1,X2,…,Xn,…相互独立,其概率分布为(i=1,2,…)令Yn=Xi,讨论当n→∞时,Yn的依概率收敛性.
设函数f(x)在x=1的某邻域内连续,且有(Ⅰ)求f(1)及(Ⅱ)求f’(1),若又设f"(1)存在,求f"(1).
设A和B为任意两不相容事件,且P(A)P(B)>0,则必有()
设F(x)=∫xx+2xesintsintdt,则F(x)().
随机试题
下列关于中外合资有限责任公司的表述,正确的有()
若函数f(x)的反函数图像过点(1,5),则函数y=f(x)的图像必过点_________.
茧唇唇肿高突坚硬或溃烂疼痛,口渴尿赤,舌质红苔黄脉数。证属
重度营养不良引起水肿的主要原因是过敏性反应时组织水肿的原因是
如图3-370与图3-371仅荷载不同,则关于A点与B点的竖向变形数值(fA和fB)关系,下列何项正确?[2007年第29题]
过之轴和点(1,2,-1)的平面方程是()。
根据《水利水电工程施工合同和招标文件示范文本》(GF—2000—0208),承包人的违约行为包括()等。
金融衍生产品投资风险的管理方法包括()。
A、 B、 C、 D、 A
Asalways,IampleasedtobehereattheNationalPressClubformy【L1】______Speech.ThisistheseventhtimeIhavehadthe【L2
最新回复
(
0
)