首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设曲面积分∫L[f(x)+excos2x]sinydx+f(x)cosydy与路径无关,其中f(x)具有一阶连续导数,则f(x)=________.
设曲面积分∫L[f(x)+excos2x]sinydx+f(x)cosydy与路径无关,其中f(x)具有一阶连续导数,则f(x)=________.
admin
2022-07-21
71
问题
设曲面积分∫
L
[f(x)+e
x
cos2x]sinydx+f(x)cosydy与路径无关,其中f(x)具有一阶连续导数,则f(x)=________.
选项
答案
e
x
([*]sin2x+C)
解析
由曲线积分与路径无关,得
[f(x)cosy]=
[(f(x)+e
x
cos2x)siny]
即f’(x)-f(x)=e
x
cos2x,为一阶线性微分方程,解得
f(x)=e
x
(
sin2x+C)
转载请注明原文地址:https://kaotiyun.com/show/dCR4777K
0
考研数学三
相关试题推荐
证明:当x>0时,x2>(1+x)ln2(1+x).
证明:
设f(x)在(-∞,+∞)上有定义,x0≠0为函数f(x)的极大值点,则().
设f(x)为连续函数,(1)证明:∫0πxf(sinx)dx=∫0πf(sinx)dx=f(sinx)dx;(2)证明:∫02πf(|sinx|)dx=f(sinx)dx;(3)求∫0π
把f(x,y)dxdy写成极坐标的累次积分,其中D={(x,y)|0≤x≤1,0≤y≤x}.
计算下列二重积分:计算xydxdy,其中D={(x,y)|y≥0,x2+y2≤1,x2+y2≤2x}.
计算(a>0),其中D是由曲线和直线y=-x所围成的区域.
设x∫0x+y∫0x≤2ay(a>0),则f(x,y)dxdy在极坐标下的累次积分为().
设f(x)是区间[0,+∞)上单调减少且非负的连续函数,证明数列{an}的极限存在.
随机试题
患儿男,4岁8个月。因发热2天,左侧肢体瘫痪1天入院。2天前无明显诱因发热,体温40.3℃,伴头痛、呕吐2次,为胃内容物,非喷射性,于外院输液对症治疗,体温降至正常,入院前1天,患儿出现左侧肢体无力,不能站立,无发热及抽搐。查体:双下肢对称分布针尖大小紫红
2013年12月31日,甲公司某项固定资产计提减值准备前的账面价值为1000万元,公允价值为980万元,预计处置费用为80万元,预计未来现金流量的现值为1050万元。2013年12月31日,甲公司应对该项固定资产计提的减值准备为()万元。(201
下列各项中,年度终了需要转入“利润分配——未分配利润”科目的有()。
文书校对的方法有()。
400米全力跑,运动肌肉的主要供能系统为()
人们常说“品牌瓶装水品质更好”。美国广播电视网做了一个口味测试,把不同品牌的瓶装水和纽约市中心的公用饮用水装入同样的杯子中,要求人们对这些水进行品尝并评定等级。结果评价最低的是一种品质受到广泛认可的某品牌瓶装水。以下最能解释以上矛盾现象的是()。
下列结构中为非线性结构的是
在Java中,属于整数类型变量的是()。
74℃
Lookatthestatementsbelowandatthefiveextractsfromanarticleaboutlossofcontroldownwardinmanagement.Whicharticl
最新回复
(
0
)