首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设矩阵 其中ai,bi(i=1,2,…,n)不全为零.设tr(A)=a.证明: (Ⅰ)a≠0,矩阵相似于对角阵; (Ⅱ)a=0,矩阵不能相似于对角阵.
设矩阵 其中ai,bi(i=1,2,…,n)不全为零.设tr(A)=a.证明: (Ⅰ)a≠0,矩阵相似于对角阵; (Ⅱ)a=0,矩阵不能相似于对角阵.
admin
2020-12-17
49
问题
设矩阵
其中a
i
,b
i
(i=1,2,…,n)不全为零.设tr(A)=a.证明:
(Ⅰ)a≠0,矩阵相似于对角阵;
(Ⅱ)a=0,矩阵不能相似于对角阵.
选项
答案
(Ⅰ)设α=(a
1
,a
2
,…,a
n
)
T
,β=(b
1
,b
2
,…,b
n
)
T
,则矩阵A=αβ
T
. 于是 A
2
=AA=(αβ
T
)(αβ
T
)=(β
T
α)αβ
T
=([*]a
i
b
i
)A=tr(A).A=aA. 设λ是A的特征值,ξ是对应的特征向量,则 A
2
ξ=aAξ,λ
2
ξ=aλξ,(λ
2
一aλ)ξ=0. 由于ξ≠0,故有λ(λ—a)=0.所以,矩阵A的特征值是0或a.又因为[*]λ
i
=tr(A)=a≠0,所以λ
1
=a是A的1重特征值,λ
2
=λ
3
=…=λ
n
=0是A的n一1重特征值. 对于特征值λ
2
=λ
3
=…=λ
n
=0,齐次线性方程组(0.E一A)x=0其系数矩阵的秩 r(0.E—A)=r(一A)=r(A) =r(αβ
T
)≤min{r(α),r(β
T
)}=1. 又因为tr(A)=[*]a
i
b
i
=a≠0,a
i
,b
i
(i=1,2,…,n)不全为零.由此可知 r(A)≥1. 所以r(0.E—A)=1.因此,矩阵A的属于n一1重特征值0的线性无关的特征向量个数为n一1. 从而,A有n个线性无关的特征向量,故A相似于对角矩阵. (Ⅱ)当tr(A)=0时,λ=0是A的n重特征值.但因a
i
,b
i
(i=1,2,…,n)不全为零,故A≠0,因而A不相似于对角阵.
解析
转载请注明原文地址:https://kaotiyun.com/show/dCx4777K
0
考研数学三
相关试题推荐
[2006年]设x>0,y>0.求
[2014年]设函数f(x),g(x)在区间[a,b]上连续,且f(x)单调增加,0≤g(x)≤1.证明:
设随机变量X的分布函数为F(x),密度函数为f(x)=af1(x)+bf2(x),其中f1(x)是正态分布N(0,σ2)的密度函数,f2(x)是参数为λ的指数分布的密度函数,已知,则()
设函数f(u)连续,区域D={(x,y)|x2+y2≤2y},则f(xy)dxdy等于()
设随机变量X,Y的分布函数分别为F1(x),F2(x),为使得F(x)=aF1(x)+bF2(x)为某一随机变量的分布函数,则有().
设随机变量X与Y独立,且X~B(1,),Y~N(0,1),则概率P{XY≤0}的值为
已知随机变量X1与X2相互独立且有相同的分布:P{Xi=一1}=P{Xi=1}=(i=1,2),则()
设幂级数的收敛半径为()
[2009年]设X1,X2,…,Xn是来自二项分布总体B(n,P)的简单随机样本,[*]和S2分别为样本均值和样本方差.记统计量[*]则E(T)=___________.
随机试题
关于盆腔内脏器与腹膜关系的叙述,哪项是正确的()
肝的体表投影,下列描述哪项不正确()
胸腔积液较多,一般每次抽液量不超过多少()
冬天小儿的尿液冷却后呈白色浑浊是由于
A机电工程公司通过竞标总承包了一新建机械厂的通风与空调工程,总工期为6个月。主辅材料均由A机电公司供应。其中,分部分项工程量清单计价合计为536万元;措施项目清单计价合计60万元;其他项目清单计价合计15万元。取费费率为:规费费率4.85%;税率3.56%
会计科目的设置原则包括()。
依次填入下列各句横线处的成语,恰当的一组是()。①他的演唱真是________,赢得了全场观众的热烈喝彩。②只要问题得到解决,其他问题就________了。③形式多样的文艺节目不断出现,有如________。
下列各句中没有语病且句意明确的一句是:
Whyarethelivesofplantsnotwell-knowntomostpeople?
A、Theylivedincaves.B、Theydidn’thavetheirlanguage.C、Theycouldonlybuildhouseswithanimalhonesandskins.D、Theywer
最新回复
(
0
)