首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设矩阵 其中ai,bi(i=1,2,…,n)不全为零.设tr(A)=a.证明: (Ⅰ)a≠0,矩阵相似于对角阵; (Ⅱ)a=0,矩阵不能相似于对角阵.
设矩阵 其中ai,bi(i=1,2,…,n)不全为零.设tr(A)=a.证明: (Ⅰ)a≠0,矩阵相似于对角阵; (Ⅱ)a=0,矩阵不能相似于对角阵.
admin
2020-12-17
32
问题
设矩阵
其中a
i
,b
i
(i=1,2,…,n)不全为零.设tr(A)=a.证明:
(Ⅰ)a≠0,矩阵相似于对角阵;
(Ⅱ)a=0,矩阵不能相似于对角阵.
选项
答案
(Ⅰ)设α=(a
1
,a
2
,…,a
n
)
T
,β=(b
1
,b
2
,…,b
n
)
T
,则矩阵A=αβ
T
. 于是 A
2
=AA=(αβ
T
)(αβ
T
)=(β
T
α)αβ
T
=([*]a
i
b
i
)A=tr(A).A=aA. 设λ是A的特征值,ξ是对应的特征向量,则 A
2
ξ=aAξ,λ
2
ξ=aλξ,(λ
2
一aλ)ξ=0. 由于ξ≠0,故有λ(λ—a)=0.所以,矩阵A的特征值是0或a.又因为[*]λ
i
=tr(A)=a≠0,所以λ
1
=a是A的1重特征值,λ
2
=λ
3
=…=λ
n
=0是A的n一1重特征值. 对于特征值λ
2
=λ
3
=…=λ
n
=0,齐次线性方程组(0.E一A)x=0其系数矩阵的秩 r(0.E—A)=r(一A)=r(A) =r(αβ
T
)≤min{r(α),r(β
T
)}=1. 又因为tr(A)=[*]a
i
b
i
=a≠0,a
i
,b
i
(i=1,2,…,n)不全为零.由此可知 r(A)≥1. 所以r(0.E—A)=1.因此,矩阵A的属于n一1重特征值0的线性无关的特征向量个数为n一1. 从而,A有n个线性无关的特征向量,故A相似于对角矩阵. (Ⅱ)当tr(A)=0时,λ=0是A的n重特征值.但因a
i
,b
i
(i=1,2,…,n)不全为零,故A≠0,因而A不相似于对角阵.
解析
转载请注明原文地址:https://kaotiyun.com/show/dCx4777K
0
考研数学三
相关试题推荐
[2013年]函数的可去间断点的个数为().
[2013年]设生产某产品的固定成本为60000元,可变成本为20元/件,价格函数为(P是单价,单位:元;Q是销量,单位:件),已知产销平衡,求:使得利润最大的定价P.
[2006年]设函数f(u)可微,且f’(0)=1/2,则z=f(4x2-y2)在点(1,2)处的全微分dz|1,2=___________.
设随机变量X的分布函数为F(x),密度函数为f(x)=af1(x)+bf2(x),其中f1(x)是正态分布N(0,σ2)的密度函数,f2(x)是参数为λ的指数分布的密度函数,已知,则()
设A是n阶实对称矩阵,P是n阶可逆矩阵.已知n维列向量α是A的属于特征值A的特征向量,则矩阵(P-1AP)T属于特征值A的特征向量是
设(X1,X2,…,Xn)(n≥2)为标准正态总体X的简单随机样本,则().
设随机变量X与Y独立,且X~B(1,),Y~N(0,1),则概率P{XY≤0}的值为
设f(x)在[0,1]二阶可导,且|f(0)|≤a,|f(1)|≤a,|f"(x)|≤b,其中a,b为非负常数,求证:对任何c∈(0,1),有|f’(c)|≤2a+b.
设f(x)在x=x0的某邻域内有定义,在x=x0的某去心邻域内可导,则下列说法正确的是
设二次型f(x1,x2,x3)=4x22一3x32+2ax1x24x1x3+8x2x3(其中a为整数)经过正交变换化为标准形f=y12+6y22+6y32,求:(I)参数a,b的值;(Ⅱ)正交变换矩阵Q。
随机试题
细菌的来源有下列途径,但除外
牙周膜的主要成分是
下列关于流水施工的说法中,正确的有()。
社会工作者小方正在进行一项定性研究,探索贫困家庭关系的影响。在开展研究时,小方必须()。
北京市拟调高出租车起步价来解决“打车难"的问题。有的人认为出租车太少,有的人认为出租车的空载率比较高,请谈谈你就治理“打车难”问题的看法。
Literatureisaformofartthatcanbeenjoyedwithoutformalinstruction.However,peoplewith【1】knowledgeofliteraturemaym
TheHistoryofFilmTheworld’sfirstfilmwasshownin1895bytwoFrenchbrothers,LouisandAugusteLumi6re.Althoughito
TheauthoritiesinSeattlehavechargedthe2Algerianswith______.
What’sthechanceof______ageneralelectionthisyear?
Linda:How’syoursister,Mary?Mary:She’sfine,thanks.Asamatteroffact,she’sexpecting.Linda:Oh,isshe?______Mary:
最新回复
(
0
)